Doc Ref
One Analytics System Administration Handbook/December 2017/2018-01-02
© Capita Business Services Ltd 2018. All rights reserved. No part of this publication may be
reproduced, photocopied, stored on a retrieval system, translated or transmitted without the
express written consent of the publisher. Microsoft® and Windows® are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries.
www.capita-one.co.uk

Contacting One Application Support
You can log a call with One Application Support via the Customer Service tool available
on My Account.

Providing Feedback on Documentation
We always welcome comments and feedback on the quality of our documentation including
online help files and handbooks. If you have any comments, feedback or suggestions
regarding the module help file, this handbook (PDF file) or any other aspect of our
documentation, please email:
onepublications@capita.co.uk
Please ensure that you include the document name, version and aspect of documentation
on which you are commenting.
Contents

01| Introduction ..1
 Introduction to the One Analytics System Administration Handbook1
 One Analytics Overview ..1
 One Analytics Architecture ...2
 One Analytics Core Elements ..2

02| Data Sources ...4
 Introduction ..4
 Using Data Sources ..4
 Editing Data Sources ..7
 Downloading Data Sources ...8
 One Analytics Server ...8
 One Analytics Desktop ..8
 Configuring Data Sources ...9
 Introduction ..9
 Adding and Editing Calculated Fields ..9
 Adding UDFs to Data Sources ..12
 Converting Data Item Types ..18
 Creating Aliases ..19
 Publishing Data Sources to the One Analytics Server ...20
 Updating New Data Sources ..22
 Transferring Calculated Fields ...22
 Manually Replacing Data Sources in Workbooks ..23
 Filtering Data Sources ...23
 Applying Filters at the Data Source Level ...23
 Applying User-Level Data Security to Data Sources ...26

03| Workbooks ..31

04| Projects ..32
 Introduction ...32
 Creating a New Project ..33

05| The Data Warehouse ..34
 Introduction ...34
 Setting ETL Schedules ...34
 Identifying Errors with the Diagnostics Tool ..34
 Using One Analytics Data with Corporate Reporting Solutions35

06| Importing Users from One ..37
 Granting One Users Access to the One Analytics Server ...37
 Creating New One Analytics Passwords for Desktop Users ...38
 Changing Your Own Desktop Password ...39

07| Configuring User Permissions ..41
Appendix C: Capita-Branded Colour Codes .. 134

Introduction ... 134
Colour Code .. 134
Colour Schemes: Discrete ... 136
Colour Schemes: Ordered ... 136

Index ... 137
Introduction

Introduction to the One Analytics System Administration Handbook

This handbook is designed to help you administrate the One Analytics system within your local authority. The handbook should be used alongside your training materials and the One Analytics Console and Desktop handbooks. Because One Analytics is built upon the Tableau® business intelligence toolset, the Tableau help guides are referenced where appropriate within the document. If you have questions about the software that are not covered within the handbooks or training guides, you should check the Tableau online help guides:

NOTE: The Tableau help guides fully apply to One Analytics except where they reference connections to other (external) data sources. In One Analytics you can only connect to data sources provided by Capita One or imported using the One Analytics Import Tool.

One Analytics Overview

One Analytics is a reporting and analysis solution enabling Local Authorities to:

- Provide all levels of management with access to information through dashboards displaying trends within their Capita One data.
- Provide self-service reporting, enabling all users with the appropriate permissions to report on their data, even if they do not consider themselves to be report writers.
- Analyse geographic patterns within their One data to identify different needs and levels of service provision across each local area.
- Use filters and dashboards to understand the impact of particular services on vulnerable groups, and identify those where additional support is required.
- Support multi-agency working, early intervention and close relationships with other agencies by sharing dashboards (and self-service reporting, if desired) with partners such as schools, academies, health and police.
- Access prebuilt dashboards and reports available through the One Analytics Report Catalogue.

Most of your users will access One Analytics through the One Analytics Console. This has been designed to enable report interactors and data discoverers to view the different reports and dashboards that have been published on the One Analytics Server. Users with the appropriate permissions can also create and share their own visualisations and workbooks through the console.

Your report writers will have One Analytics Desktop installed on their local machine, which enables them to more fully use, analyse and present the data. They can upload the reports and dashboards they create to the One Analytics Server, where other users can view them.
One Analytics Architecture

The following graphic shows the One Analytics end-to-end architecture, summarising the ETL, data warehouse, data sources and business intelligence layers:

One Analytics Core Elements

Data Warehouse

The One Analytics data warehouse is hosted within Microsoft SQL Server and uses two of the main Microsoft SQL Server suite elements:

- SQL Server Database Services
- SQL Server Integration Services (SSIS).

Data from the operational database is loaded into the One Analytics data warehouse using Extract, Transform, Load (ETL) processes. During this process, data is cleansed and transformed into denormalised structures for reporting. eStart members are matched with their One student and person records.

NOTE: The data in the data warehouse is a snapshot of the Oracle database at the point that the ETL process was last run. It is not real-time data.

ETL processes are run on a schedule and at a frequency defined at the LA level. For more information, see Setting ETL Schedules on page 34.

By default, all SSIS packages are set to run overnight. If required, your Microsoft SQL Server database administrator can change the timings and frequency of when the packages are run.

One Analytics Import Tool

Customers with a Pulse licence can use the One Analytics Import Tool to add complementary data to the One Analytics data warehouse, e.g. Indices of Multiple Deprivation, population data and statistical neighbour data. The import tool is also used to import geographical polygons to be used in maps.

Data Sources

Data sources present data from the data warehouse in such a manner that user can drag and drop it to create data visualisations. They provide ‘views’ of the data, and include field names, metadata and common calculated fields.

Workbooks

Workbooks are collections of visualisations that answer a single question or a series of related questions. These are usually brought together on a dashboard.
One Analytics Server

One Analytics Server is a business analytics platform powered by Tableau server. It consists of several components that connect to specially created data sources in order to analyse and report on data stored in the data warehouse. One Analytics Server hosts the data sources and workbooks and provides a platform for viewing, sharing and collaborating on visualisations and dashboards.

The One Analytics Server interface also includes data discovery and report authoring tools.

One Analytics Console

The One Analytics console is a wrapper on top of the One Analytics Server. It enables you to access the One Analytics Report Viewer and display SSRS reports alongside One Analytics reports. Most users (report interactors and data discoverers) will access One Analytics Server through the console.

The One Analytics console also enables administrators to access the eStart Matching utility, where available.

One Analytics Desktop

A small number of users (mainly report writers) within your LA will have the One Analytics Desktop installed on their workstations. This is a desktop authoring environment that can be used to create workbooks and publish visualisations to the One Analytics server.

When One Analytics releases include upgrades to One Analytics Desktop, users must update the version installed on their local machines. It is recommended that your Local Authority has a strategy in place to inform desktop users of the change and enable them to access the installation media. A one-page desktop installation guide, `RG_OA_Installing OA Desktop`, has been created to assist with this. You can update the guide to include the installation file location and One Analytics server address before distributing it to desktop users. The document is available in the One Analytics section of the Capita One documentation website.
Introduction

Using Data sources

One Analytics uses data sources to organise the data from the data warehouse in a way that makes it easy to create visualisations.

The data sources within One Analytics represent different views of the data within the data warehouse. They focus on viewing the data associated with a specific module, but also include common core data around students and bases. This means that users can often answer many questions from a single data source, even if the question requires data that is not the main subject of that data source.

The data sources provide users with the materials needed to create visualisations. They include:

- Pre-joined tables enabling report writers to drag and drop dimensions to create visualisations without having to consider how best to link the tables together.
- Intuitively named dimensions and measures, organised into folders.
- Metadata in tool tips to provide additional context on the dimension or measure.
- Frequently used calculated fields to make it easier to create visualisations.
- Logical hierarchies to enable drill-down through data layers within visualisations.

Where available, joint data sources can be used to report across different areas. Joint data sources combine data from different areas into a single data source and function the same as other data sources. The CSS, SEN, Provision, Activity & Attainment joint data source is currently available, others are planned for future release.
Most data sources have a similar setup consisting of dimensions, measures and parameters. These are displayed in the **Data** tab when you create or open a worksheet and connect it to a data source. The data sources to which you are connected are displayed above the **Dimensions** pane in the **Data** tab. If you are connected to multiple data sources, the **Dimensions, Measures** and **Parameters** panes are displayed for the highlighted data source.

Dimensions

Dimensions are independent data items with which you can interact without aggregating. They usually represent discrete data items.

NOTE: Discrete data items are identified in the shelves by a blue lozenge, continuous ones by a green lozenge.

The **Dimensions** pane contains module-specific folders as well as a set of core **Student** folders that are common to most data sources. The **Student** dimensions include student details and identifiers, as well as codes and flags, e.g. Free School Meals and Children Looked After.

NOTE: Many flags are either current, e.g. **Currently CLA**, or historic, e.g. **CLA Ever**. These indicate whether the student currently has that flag, or has had it in the past.

Measures

Measures are a function of one or more dimensions, and are usually continuous. The **Measures** pane contains a similar set of folders to the **Dimensions** pane, although there are fewer measures than dimensions. The folders for measures are often name-matched to the corresponding folders for dimensions.
Parameters
Parameters are predefined elements that enable you to replace constant values in calculations, filters or reference lines with a dynamic value that can be changed within worksheets or dashboards to provide a range of information from a single calculation. Parameters are shared across data sources, and can be matched with their associated dimensions and measures by the folder names.

MORE INFORMATION:
Parameters: http://onlinehelp.tableau.com/current/pro/desktop/en-us/help.htm#parameters.html%3FTocPath%3DAdvanced%2520Analysis%7CParameters%7C_____0

Where a measure or dimension requires the use of a parameter, a note is included in the measure or dimension’s metadata identifying the parameter and providing a brief description. The metadata is included in a tool tip displayed by hovering the cursor over the measure or dimension.

When using measures or dimensions associated with a parameter to build a worksheet, you should display the parameter control. This enables you to keep track of the parameter values and avoid confusing, unexpected results.

To display the parameter control, in the Parameters pane right-click the required parameter and select Show Parameter Control.

The parameter control card is displayed beside the visualisation in the worksheet. You can select the parameter to use from the drop-down list.
Editing Data Sources

IMPORTANT NOTE: Edited data sources are not supported by Capita One. The Application Support team will attempt to answer queries about data sources edited by Local Authorities, however the solution might require you to revert to the latest release of the Capita One data source and reapply the changes.

There are four steps that must be followed when customising a data source for use within your local authority:

1. Downloading the data source
2. Editing the data source
3. Publishing the data source to the One Analytics server
4. Maintaining the data source when Capita release new versions of One Analytics.

The Capita-supplied data sources cannot be edited. Any data sources you need to customise must be downloaded from the One Analytics server and edited in One Analytics Desktop. The edited version can then be published back to the One Analytics server for general use. The edited data source should be given a new name to prevent the changes being lost when new versions of the data source are released.

You can download a data source through One Analytics Server or through the desktop application.

MORE INFORMATION:

Downloading Data Sources

One Analytics Server
To download a data source through One Analytics Server:

1. From the One Analytics Server home page, select the Data Sources tab to display the available data sources.

2. Click the ellipsis for the required data source to display the drop-down with available options.

3. Select Download.
 The data source is saved to your default download location as a TDSX file.

One Analytics Desktop
To download a data source through One Analytics Desktop:

1. Open One Analytics Desktop.
2. In the Home screen, click the Tableau Server hyperlink to display the available data sources.
3. Hover the cursor over the required data source to display the download icon

4. Click the download icon for the required data source to display the Create Local Copy dialog.

5. If required, select a new location to save the copied data source and enter a new File name.

6. Click the Save button.

A copy of the data source is automatically opened in One Analytics Desktop with ‘(local copy)’ appended to the name.

Configuring Data Sources

Introduction

IMPORTANT NOTE: Edited data sources are not supported by Capita One. The Application Support team will attempt to answer queries about data sources edited by Local Authorities, however the solution might require you to revert to the latest release of the Capita One data source and reapply the changes.

To edit a data source in One Analytics Desktop, open the local copy of the data source that was downloaded from the One Analytics server. You can find guidance on creating and maintaining calculated fields and user defined fields in this section.

Adding and Editing Calculated Fields

The underlying data warehouse structure for One Analytics includes a number of calculated fields that have been created to make it easier to create commonly required visualisations. In addition, some calculated fields have been included in the data source layer. This is typically when the result of the calculation depends on the fields included in the visualisation.

When looking at a data source, calculated fields can be identified by the presence of an equals sign to the left of the data-type symbol that precedes the name:
Adding Calculated Fields to a Data Source

To add a calculated field to a data source:

1. Download a copy of the required data source from the One Analytics server.
2. Open the downloaded data source (TDS) file in One Analytics Desktop.
3. If prompted, enter your login credentials.
4. From the menu bar, select Analysis | Create Calculated Field… to display the Calculate Field dialog.
5. Enter a name for the new field.
6. Enter the calculation. To display a list of functions, click the arrow on the right-hand side of the dialog. You can double-click a function to add it to the calculation.
7. Click the OK button to save the changes and close the dialog.

NOTE: If the calculation is invalid, a warning is displayed at the bottom of the dialog stating that the calculation contains errors. Click the arrow to display the error, and then click the error to locate where it occurs in the formula.
8. To place the new calculated field in an appropriate folder, right-click the field and select either
 - Folders | Add to Folder, to select an existing folder
 - or
 - Folders | Create Folder, to create a new folder.

 NOTE: You should create a folder for new or edited calculated fields to facilitate identification of custom fields. This will help you to keep your data sources up to date when new versions are released.

Editing Calculated Fields

To edit a calculated field within a data source:

1. Download a copy of the required data source from the One Analytics server.
2. Open the TDS file in One Analytics Desktop.
3. To display the calculated field editor for a specific field, either:

 - From the menu bar, select **Analysis | Edit Calculated Field** to display the calculated fields, and select the required field from the list.

 ![Screenshot of the calculated field editor](image)

 or

 - Right-click the required dimension or measure and select **Edit...**

 ![Screenshot of right-click options](image)

 The calculated field editor is displayed.

 ![Screenshot of the calculated field editor](image)

 4. If required, edit the name of the field.
5. Type the calculation or select the elements from a list of functions. To display a list of functions, click the arrow on the right-hand side of the dialog. You can double-click a function to add it to the calculation.

![Calculator dialog with example calculation]

6. Click the **OK** button to save the changes and close the dialog.

 NOTE: If the calculation is invalid, a warning is displayed at the bottom of the dialog stating that the calculation contains errors. Click the arrow to display the error, and then click the error to locate where it occurs in the formula.

7. To place the new calculated field in a different folder, right-click the field and select either:
 - **Folders | Add to Folder**, to select an existing folder
 - **Folders | Create Folder**, to create a new folder.

 NOTE: You should create a folder for new or edited calculated fields to facilitate identification of custom fields. This will help you to keep your data sources up to date when new versions are released.

Adding UDFs to Data Sources

Introduction

IMPORTANT NOTE: Edited data sources are not supported by Capita One. The Application Support team will attempt to answer queries about data sources edited by Local Authorities, however the solution might require you to revert to the latest release of the Capita One data source and reapply the changes. The Capita One Professional Services team offer services supporting local authorities in the setup and maintaining of UDFs within data sources.

The underlying data warehouse structure for One Analytics includes UDF (user defined field) dimensions to enable information based on locally created UDF records to be analysed.

UDFs are available within One Analytics for all modules for which a Capita data source exists. They are reported on in a similar manner as within the Capita One system, however, the following differences must be considered:

- **UDFs are not included in data sources by default as they are unique to your LA.**
- **Involvement UDFs exist in a single data warehouse table, ‘UDF_CSS_SEN’, not the individual dimensions created in Capita One.**
- **UDF dimension names are not the same as those implemented within Capita One but are named relative to their context (see Appendix A: UDF Dimensions on page 124).**
Adding UDFs to a Data Source

To be able to report on UDFs, you must add them to the appropriate data source. Data sources supplied by Capita One cannot be amended, therefore to add UDFs to a data source, you must download a copy of the data source and make the required changes in the downloaded TDS file.

NOTE: The following steps must be repeated each time Capita One releases a new version of the underlying data source. For more information on new versions of data sources, see Updating New Data Sources on page 22.

To add UDFs to a data source:

1. Download a copy of the required data source from the One Analytics server.
2. Open the TDS file in One Analytics Desktop.
3. Select the **Data Source** tab.
4. If you are prompted to enter your user credentials, do so now to connect to the data warehouse and display the data source.
5. In the **Table** field in the left-hand column, click the search icon to display the **Enter table name** field.

![Image of Table field]

6. Enter the name of the required UDF to filter the **Table** list.

7. Drag and drop the dimension into the white panel, which now has an orange border. See the data warehouse table and field information in Appendix A: UDF Dimensions on page 124 to ensure correct implementation.

![Image of dimension being dragged into panel]

The dimension is added to the existing set of connections in the panel.

![Image of added dimension]

The type of join displayed depends on whether One Analytics can identify a connection or not:

- If a connection between the existing tables and the new table can be identified, One Analytics Desktop automatically assumes the relationship and the join is indicated by a blue circle overlapping a white circle.

![Image of blue circle over white circle]

Data Sources

One Analytics System Administration Handbook

5. In the **Table** field in the left-hand column, click the search icon to display the **Enter table name** field.

![Image of Table field]

6. Enter the name of the required UDF to filter the **Table** list.

7. Drag and drop the dimension into the white panel, which now has an orange border. See the data warehouse table and field information in Appendix A: UDF Dimensions on page 124 to ensure correct implementation.

![Image of dimension being dragged into panel]

The dimension is added to the existing set of connections in the panel.

![Image of added dimension]

The type of join displayed depends on whether One Analytics can identify a connection or not:

- If a connection between the existing tables and the new table can be identified, One Analytics Desktop automatically assumes the relationship and the join is indicated by a blue circle overlapping a white circle.

![Image of blue circle over white circle]
Because this might not be the correct connection to the correct table, you must check it and, if necessary, amend it. To check the connection, click the join to display the Join dialog.

If a connection between the existing tables and the new table cannot be identified, two intersecting white circles and a red exclamation mark are displayed. You must create a new relationship.

If there is no relationship, the Join dialog is displayed automatically for you to create the connection.

8. Select the Left join type to display the Add new join clause drop-down in the Data Source column.

NOTE: Dimensions are always linked to UDF dimensions with a Left join type.

9. Locate the required field in the drop-down or enter the field name in the Enter search text field to filter the drop-down list to fields matching the required name.

NOTE: Different dimensions might contain similarly named but dimension-specific fields, e.g. the Person Id field name might be used in different contexts, such as for EWO, or ED Psych, etc. and would appear more than once. If this is the case, ensure you select the field below the required dimension heading.

10. Select the required field.
11. Click within the central column to display the join type drop-down.

12. Ensure the = join type is selected.

NOTE: By default, the relationship between two tables is based on equality. It is recommended that you do not change this.

13. Click the field in the right-hand column to activate the **Enter search text** field and display the available fields for the join.

14. Locate the required field in the drop-down or enter the field name in the **Enter search text** field to filter the list.

15. Select the required field.

16. If required, add any additional join clauses by repeating steps 7-14.

17. Click the **X** button to close the dialog.

18. The link is now displayed in the panel.

19. Select the **Sheet 1** tab. The new set of fields from within the UDF has been added to the data source and is displayed in either the **Dimensions** or **Measures** pane.

20. It is highly recommended to group these fields into an appropriate folder for ease of use in the future.
To group UDFs:

a. If required, create a new folder:
 i. Ensure that the **Dimensions** pane is grouped by folder (click the down-arrow icon in the pane header to display the menu drop-down and select **Group by Folder**).

 ![Dimensions pane menu drop-down]

 ii. Right-click within the pane and select **Folders** | **Create Folder** to display the **Create Folder** dialog.

 ![Create Folder dialog]

 iii. Enter an appropriate name for the folder and click the **OK** button to add the folder to the **Dimensions** pane.

b. Select the fields you want to add to the folder.

 TIP: Hold **Shift** and use the arrow keys or hold the **Ctrl** key and left-click on the required fields to highlight multiple fields at once.

c. Right-click the highlighted fields and select **Folders** | **Add to Folder** and then the appropriate folder to add the fields to the folder.

![Add to Folder dialog]
Data Sources

21. If required, hide any inactive UDF fields that are no longer in use by right-clicking on the required field and selecting Hide.

NOTE: To display hidden fields, right-click within the pane and select Show hidden fields. This option is not available if there are no hidden fields.

22. To save the new data file, select Data | [file name] | Add to saved data sources… The UDF dimension and fields are now available for use within visualisations.

NOTE: If required, you can add additional UDFs to a data source if there are multiple contexts available.

23. To enable other users to access the modified data source, you must upload it to the One Analytics server. For more information, see Publishing Data Sources to the One Analytics Server on page 20.

Converting Data Item Types

Data items have been created as dimensions or measures and assigned to be continuous or discrete based on how each item is expected to be most commonly used. You can convert certain items from dimensions to measures and continuous to discrete, or vice versa according to your needs.

To convert data items:

1. Create a copy of the appropriate data source (see Downloading Data Source on page 8), open a previously copied data source or open the data source in a workbook.

2. To convert to a measure or dimension, right-click the required data item and select Convert to measure or Convert to dimension as appropriate.
3. To convert to continuous or discrete, right-click the required data item and select **Convert to continuous** or **Convert to discrete** as required.

![Dimensions menu with Convert to Continuous option highlighted]

The change applies to any subsequent uses of the converted data item. It does **not** affect how the data item has already been used.

TIP: You can also right-click data items in the **Rows** and **Columns** shelves to access this functionality. Converting a data type this way only applies the change to that specific use of the data item.

Creating Aliases

You can use aliases to rename values within a dimension. This enables you to clarify certain values and tailor them to your needs. For example, if you import vulnerable groups from One v4, flags are automatically created for each vulnerable group with the values True, False and Null. You can create aliases for the values to give these flags more meaning, for example:

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
<th>Alias</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>The client currently belongs to this vulnerable group.</td>
<td>Now</td>
</tr>
<tr>
<td>False</td>
<td>The client does not currently belong to this vulnerable group, but has done in the past.</td>
<td>Ever</td>
</tr>
<tr>
<td>Null</td>
<td>The client has never belonged to this vulnerable group.</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: You cannot add aliases to continuous dimensions, dates, or measures. You will also need to recreate the aliases when you upgrade to new data sources.

To add aliases to a dimension:

1. Download a copy of the required data source from the One Analytics server.
2. Open the TDS file in One Analytics Desktop.
Data Sources

3. Right-click the required dimension and select Aliases... to display the Edit Aliases dialog.

4. Click the required value in the Value (Alias) column to highlight the text.

5. Enter the new value into the field and press the Return key to set the alias for that value.

6. Repeat steps 4 and 5 for the remaining values.

7. Click the OK button to save the changes and close the dialog.

Publishing Data Sources to the One Analytics Server

To make a customised data source available for other users, you must publish it to the One Analytics server. If you need to publish it to several different projects, you must repeat the process for each project.

NOTE: Any subsequent changes to the data source require it to be republished to any project affected by the changes.
To publish a data source to the One Analytics server from One Analytics Desktop:

1. In the data source, select Server | Publish data source to display the open data sources.

2. Select the data source to be published to display the Publish data source to Tableau Server dialog.

3. If required, choose a new destination Project for the data source from the drop-down.

4. Enter a Name for the data source.

 WARNING: If you do not rename or change the name of the data source from the one provided by Capita One, it might be overwritten when a new version of the data source is released, causing you to lose your changes.

5. It is recommended that you note the changes made in the Description field for reference.

6. As required, add any appropriate Tags and edit the Permissions and Authentication details.

7. If required, embed the database password within the data source:
 a. Click the Edit hyperlink under the Authentication heading to display the authentication details table.
Data Sources

b. In the Authentication column, select Embedded password from the drop-down.

c. Click inside the Publish Data Source to Tableau Server dialog to close the authentication details table.

NOTE: Embedding the credentials within the data source means that users do not have to provide the database credentials each time they access the data source through a workbook or visualisation.

8. Select the **Update workbook to use the published data source** check box to enable any new fields to be used in the workbook.

9. Click the **Publish** button. A confirmation dialog is displayed after the data source is published to the server.

Updating New Data Sources

Capita periodically releases new versions of data sources. If the new version of a data source is compatible with the previous version, e.g. if no dimensions have been removed, it is released with the same name so that you can overwrite the previous version.

Updates to data sources will be documented in the release notes. You should check these for each release to ensure you are always using the most up-to-date version of the data source.

How you deal with new releases depends on whether you have made changes to your existing data sources, and whether you need to transfer these changes into the new versions. As new releases of data sources might contain new calculated fields, it is recommended that you check what changes are included with the new version of the data source before recreating or transferring your own changes.

Unchanged Data Sources

If you have made no changes to a data source:

1. Download a copy of the new version.
2. Publish it to the appropriate projects to overwrite the existing data source.

Changed Data sources

If you have changed a data source and need to transfer the changes:

1. Download a copy of the new version.
2. Copy and paste any custom calculated fields from the edited version into the new version.
3. Re-join any UDFs.
4. Publish the data source to the appropriate projects, with the same name as the existing version. The existing version will be overwritten.

Transferring Calculated Fields

If you need to transfer calculated fields:

- Calculated fields added to downloaded data sources must be copied to new versions of data sources when released by Capita. To copy calculated fields across data sources:
 - In the original data source, right-click the calculated field and select **Copy**.
In the Data tab of the new data source, right-click the blank space within the Dimensions or Measures pane as appropriate and select Paste to copy the calculated field across.

- Calculated fields added to workbooks only need the references within the workbook updating. Fields needing updating are marked with an exclamation point.

(SA))

MORE INFORMATION:

Manually Replacing Data Sources in Workbooks

When you publish a data source to projects on the One Analytics server, existing data sources with the same name are overwritten. Workbooks connecting to the data source automatically connect to the new version. If you need to manually replace the data sources in a workbook, you can do so through One Analytics Desktop. To replace multiple data sources in a workbook, complete the following steps for each data source.

To replace a data source in a workbook:

1. Open the workbook in One Analytics Desktop.
2. From the menu bar, select Data | New data source to display the Connect menu.
3. Locate and select to the required data source to add it to the report.
4. Select a worksheet tab containing the data source you are replacing.
5. From the menu bar, select Data | Replace data source… to display the Replace Data Source dialog.
6. Ensure the Current and Replacement fields contain the correct data source names, and select the appropriate ones if not.
7. Click the OK button.

Filtering Data Sources

Applying Filters at the Data Source Level

You can restrict the data that is pulled through from a data source by applying a filter directly to the data source. This can be used to control the amount of available data within the data source, e.g. limiting the academic years for which data can be displayed. When used alongside other security measures, filtering the data source can also be used to control access to data. For more information, see Applying User-Level Data Security to Data Sources on page 26.

WARNING: Users with permission to download the data source are able to remove or change the filter.
Data Sources

To add a filter at the data source level:

1. Download a copy of the required data source.
2. Open the data source in One Analytics Desktop.

3. In the top right-hand corner of the Data Source tab, click the Add button to display the Edit Data Source Filters dialog.
4. Click the **Add** button to display the **Add Filter** dialog.

![Add Filter dialog](image1)

5. Select the field you want to use as the filter to display the **Filter [Field Name]** dialog.

![Filter [Field Name] dialog](image2)

6. Create the filter as required.

MORE INFORMATION:

Filter Data from Data Sources: http://onlinehelp.tableau.com/current/pro/desktop/en-us/help.htm#filtering_datasource.html

7. Click the **OK** button to close the **Filter [Field Name]** dialog.
Data Sources

The filter is added to the Edit Data Source Filters dialog. Information is provided in the Details column indicating how much data is available with the filter applied.

8. Click the OK button to close the Edit Data Source Filters dialog.
9. Publish the data source to the One Analytics server. For more information, see Publishing Data Sources to the One Analytics Server on page 20.

Applying User-Level Data Security to Data Sources

You can use data source filters to restrict available data depending on the user accessing it. Applying user-level security enables you to filter published data according to the group, such as a school, to which the user accessing it belongs. This prevents you from needing to create individual dashboards and workbooks for each school or service group in order to preserve data confidentiality. When the filters are in place, users from a certain school can only access data pertaining to their school.

The filter applies to all users accessing the One Analytics through the desktop application or directly through the server. It does not apply to data sources that have been downloaded and are being accessed within One Analytics Desktop. Where users have permission to download data sources, additional security measures must be put in place (see Configuring User Permissions on page 41 and Configuring Content Permissions on page 47).

WARNING: Users with permission to download the data source are able to remove or change the filter.

To apply a filter to a data source, you must download the data source, add the filter, and republish it to the server. The filter only applies to workbooks and dashboards connected to that instance of the data source. This means that the process must be repeated when you migrate to new versions of the data source released by Capita One.

NOTE: The following example uses the mapping of username and mapped base ID to the base ID used in the data source to determine whether users are able to view data. The same approach can be used for any data item that can be linked to a username in the System_User table.

To add a school level filter to a data source:
1. Download a copy of the required data source.
2. Open the data source in One Analytics Desktop.
3. Select the **Data Source** tab, and locate the **System_User** table in the **Table** list.

4. Double-click the **System_User** table to add it to the data source and display the **Join** dialog.

5. From the **Data Source** list, select the base ID field that you want to use as a filter, e.g. in the current example, you might want to filter by feeder base, preference base or current school, depending on the type of report you are creating.

 NOTE: Selecting feeder, preference or registered base enables schools to view information about any students that were ever associated with the school in this capacity. Using current school as the base displays only students currently associated with the school.

6. From the **System_User** list, select **Mapped Base**.
7. Select a worksheet tab.

8. Create a new calculated field to provide the filter:
 a. From the menu bar, select **Analysis | Create Calculated Field** to display the calculated field editor dialog.

 b. Enter ‘Security Filter’ in the name field.

 c. Enter the following code in the calculation field:

   ```
   (IF USERNAME()=[User Name]THEN[Base Id (Student - Registered Base)]END) = [Mapped Base]
   ```

 NOTE: Replace `[Base Id (Student - Registered Base)]` with the dimension you chose in step 5. This formula checks each row in the data source against the user accessing it. If the user is the same as the username for the row, the base ID is returned. If the base ID returned is the same as the user’s base ID, the **Security** field value is returned as true.

 d. Click the **OK** button to close the dialog and add the calculated field to the **Dimensions** pane.

9. Select the **Data Source** tab.

10. Under the **Filters** label in the top right-hand corner of the screen, click the **Add** hyperlink to display the **Edit Data Source Filters** dialog.

11. Click the **Add** button to display the **Add Filter** dialog.
12. Select **Security Filter**.

13. Click the **OK** button to close the dialog and display the **Filter [Security Filter]** dialog.

14. Select the **True** check box.

15. Click the **OK** button to add the filter to the **Edit Data Source Filters** dialog.

16. Click the **OK** button to close the dialog and create the filter.

This filter ensures that only data that contains a **Security** field value of **True** is used in any visualisations created using this data source.
17. To test the filter in One Analytics Desktop using the **Filter as User** feature, click the username menu at the bottom of the screen and select a different user from the list. You can attempt to access the data source while impersonating another user to confirm that the filter has been created correctly.

18. Republish the data source to the One Analytics server. You can now use the data source for dashboards and workbooks that you want to filter by school or service group user.

MORE INFORMATION:

Publishing Data Sources to the One Analytics Server, page 20.
Visualisations (reports and dashboards), are created within workbooks. Workbooks connect to data sources which provide the data structure for your visualisations. A single workbook can connect to multiple data sources. They can also contain multiple worksheets (one per report) and dashboards.

After workbooks have been uploaded to the One Analytics server, they become part of a project. Each workbook can only belong to a single project, unlike data sources that can be uploaded to multiple projects.

It is recommended that you use a separate workbook for each question (or set of interrelated questions) you are trying to answer with a visualisation. This helps you to assign workbooks to the appropriate project.

Dashboards can only contain worksheets from a single workbook, so questions should be answered at the dashboard level.

MORE INFORMATION:
Workbook-Level Permissions, page 54.
Projects

Introduction

Projects group together workbooks, views and data sources. You can use projects to control the data different users can access through project permissions. For information on publishing data sources to projects, see Publishing Data Sources to the One Analytics Server on page 20.

NOTE: One Analytics contains a Default project that cannot be deleted. This project is the template for all other projects you create. You should delete all permissions from the default project so that new projects have no preassigned permissions (see Projects on page 32).

Configure the projects in the way that works best for your teams, there is no specific recommended project setup.

Example Potential Project Structures

- Projects by team: By creating a project for each team, you can publish all the required data sources to a single project, enabling the team members to access everything they need in a single place. This scenario is likely to require you to publish data sources to many projects, but enables you to set permissions defining which teams can access which workbooks at the project level.

- Projects by data source: By creating a project for each data source, you can publish each data source to a separate project and then grant teams access to the projects appropriate to them. This scenario only requires a single version of each data source, but means that permissions will need setting at a workbook level if you do not want all teams to access all workbooks within the project.
Creating a New Project

Only users with administrator privileges can create new projects.

To create a project:

1. Log in to One Analytics Server.

2. Click the New Project button to display the New Project dialog.

3. Enter a name and Description for the project.

4. Click the Create button to add the project to the project list.

After the project has been created, you can publish workbooks and data sources to it, and configure the access permissions.

MORE INFORMATION:

Publishing Data Sources to the One Analytics Server, page 20.
Adding Project Permissions, page 48.
The Data Warehouse

Introduction

Reporting in One Analytics is undertaken against the One Analytics data warehouse. Data from your operational One database, as well as eStart and One Social Care modules (where available), is brought into the data warehouse in a reportable format by an Extract, Transform and Load (ETL) process.

Setting ETL Schedules

You should ensure that the data warehouse ETLs are run on a schedule appropriate for each data area, e.g. the Attendance ETL might be run daily or multiple times per day to bring in the regular changes to attendance data, whereas the GIS ETLs might be run weekly, because address data changes less frequently. The System Administration ETL must be run for users to be imported from One or removed from the One Analytics server, so you might need to set it to run more frequently when adding large numbers of users.

Alternatively, you can run the jobs manually as required. For more information on scheduling ETL jobs, refer to Microsoft’s job implementation documentation (https://msdn.microsoft.com/en-GB/library/ms191439.aspx).

Certain ETL parameters are configured during installation in order for the ETL processes to run correctly. For more information about these parameters and how to update them in the event of new parameters being released by Capita One, see Appendix B: ETL Parameters on page 128.

Identifying Errors with the Diagnostics Tool

Capita One administrators can identify ETL errors using the diagnostics tool. The diagnostics tool is a workbook that reports on any errors or issues arising during the running of the ETL jobs.

It is recommended that you check the ETL diagnostic tool on a regular basis, particularly following the installation or upgrading of One Analytics. You can subscribe to the views used by the tool to receive daily reports via email.

MORE INFORMATION:

Subscribe to Views: https://onlinehelp.tableau.com/current/server/en-us/subscribe_user.htm

To run the diagnostics tool on the One Analytics Server:

1. Locate the diagnostics tool workbook in One Analytics Server. If you cannot locate the workbook, check with your One Administrator that you have the appropriate permissions to access the utility.
2. Select the **Views** tab to display the available worksheets.

![Image of the Views tab interface](image.png)

3. Open the **Summary** worksheet.

4. From the drop-down in the **Category** card, select the type of problem to display.

![Image of the drop-down menu](image.png)

5. If required, filter the problems by **Stage**, **Source**, **Detail** or **Last Logged** date using the filter cards.

 The **Category** column indicates the severity of the problem (issue or error). The **Source** indicates the module in which the problem occurred. The **Detail** column contains information about the underlying cause of the problem.

Using One Analytics Data with Corporate Reporting Solutions

With One Analytics, you are only licensed to report on data held within the Capita One data warehouse. It is possible, however, to use elements of One Analytics alongside your corporate reporting tools to enable multi-system reporting.
Using One Analytics with a Full Tableau Licence

If your Local Authority has full Tableau licences, you can access both One Analytics data sources and data sources created using data from other systems. With a full Tableau licence, you can blend data or create joint data sources to combine data from different systems and create cross-data visualisations.

TIP: For most applications, if you need to combine data from different systems, then creating joint data sources is a better option than data blending. This provides more flexibility when creating visualisations. For more information on preparing data for analysis using a full Tableau licence, refer to the Set Up Data Sources section of Tableau’s online help (http://onlinehelp.tableau.com/current/pro/desktop/en-us/help.htm#datasource_prepare.html).

Using Tableau to deliver multi-system reporting in this manner enables you to access all the functionality, calculated fields and metadata delivered as part of One Analytics within your corporate reporting solutions.

Using One Analytics with Other Business Intelligence Solutions

You can use One Analytics alongside other business intelligence solutions. For this to happen, the One Analytics data warehouse must be connected to your corporate business intelligence solution so that your corporate solution can benefit from the One Analytics data structures that have been optimised for reporting.

IMPORTANT NOTE: While you are permitted to connect corporate business intelligence systems to the One Analytics data warehouse and data sources, they are not supported by the Capita One Application Support team. If you experience issues when configuring or using One Analytics in this manner, it is recommended that you contact the support team for the corporate business intelligence system you are using.
Granting One Users Access to the One Analytics Server

For Capita One users to be able to access One Analytics, a One Analytics user account must be created for them. Accounts are created automatically for users belonging to the One Analytics v4 user group when the Add Users routine and Sysadmin ETL process are run (see below).

The One Analytics v4 user group name must be entered as the GroupName value in the settings.ini file for the users to be picked up by the Sysadmin ETL. It does not necessarily need to be called One Analytics, but the user group name in v4 and the GroupName value in the settings.ini file must be identical matches.

The One Analytics | Access to Console business process assigned in the One Analytics v4 user group grants user access to One Analytics through the One Analytics Console. The permission level assigned in the v4 user group controls users’ ability to interact with the One Analytics Report Viewer, accessed through the console:

- **Read**: Users can access the report viewer and view existing report matrices.
- **Read-Write/Read-Write-Delete**: Users can access the report viewer, view and edit content and create new report matrices.

The permissions set in v4 do not govern user access to data within the One Analytics Server. These permissions are configured within the One Analytics Server itself. You can create user groups within One Analytics to facilitate assigning permissions and controlling data security. Users are created in One Analytics with the minimum read-only permissions. To grant them access to data and content, you need to assign them a site role and add them to the relevant groups inside the One Analytics system after they have been imported.

Users requiring access to the eStart Matching section of the console (see eStart Matching on page 105) must belong to a user group in One v4 with the One Analytics | eStart Matching business process assigned.

To import users from One:

1. In the One v4 Client, add all users requiring a One Analytics account to the One Analytics v4 user group. For more information on assigning users to a group in the v4 Client, refer to the Managing Groups in v4 chapter of the System - Managing Users, Groups & Permissions handbook, available from the One Publications website (www.onepublications.com).

 The add user routines usually run overnight, and your changes will be reflected the next day. However, you can run the routines manually to update user accounts immediately.

2. If you must update the user account details immediately, run the Sysadmin ETL process to populate the user details in the One Analytics data warehouse.

3. Run the Add Users scheduled task to create the user accounts within One Analytics.

The Add Users task:

- Creates One Analytics accounts for any users added to the One Analytics v4 user group since the job last ran. These accounts contain the users forename, surname, email address, username, and a randomly generated password. Users who only connect to the One Analytics server through the One Analytics Console will do so with their current One credentials. Users only need a new password creating to access the One Analytics desktop application.
Importing Users from One

- Deletes One Analytics accounts for any users that were removed from the One Analytics security group since the job last ran.

NOTE: To delete users, remove them from the One Analytics security group. Do not delete them through One Analytics Server.

User access to data and content within One Analytics is determined by the site role assigned to the user and the permissions assigned to the content. Site roles determine the overall level of interaction users have with the One Analytics system. The content permissions control which users or user groups can access the individual items and how they can use them. You should assign each new user to a site role, and place them into One Analytics user groups. One Analytics Desktop users also need a new password creating. One Analytics Console users log in with their current One credentials.

MORE INFORMATION:
Adding Users to One v4 User Groups: Refer to the One System Users, Groups & Permissions handbook, available on the One Publications website.

Creating New One Analytics Passwords for Desktop Users

One Analytics users cannot use their One password to log in via the One Analytics Desktop application. You must create a new password for desktop users so that they can open data sources and workbooks within One Analytics Desktop, and publish from One Analytics Desktop to the One Analytics server. This replaces the randomly generated password created with the One Analytics account. Desktop users can still use their One username and password to access the One Analytics Console.

Desktop users should change their password to something more memorable when they first access the system.

To create a new password:

1. In One Analytics Server, select the **Users** tab to display a list of users.
2. Click the name of the required user to display the **User** screen.
3. In the **Settings** tab, click the **Change Password** hyperlink to display the **New password** and **Confirm password** fields.

4. Enter the new password in the **New password** and **Confirm password** fields, and click the **Save Password** button to update the password.

Changing Your Own Desktop Password

If you are a One Analytics Desktop user, you will use your One Analytics password to log in to the desktop application. This password is set up for you by an administrator.

If you use One Analytics Desktop, you should change your One Analytics password to something secure and more memorable.

To change your password:

1. Log in to One Analytics Server.
2. Click your name in the top right-hand corner to display the user options.
3. Select **My Account Settings** to display the **User** screen.

![User Settings](image1)

4. Click the **Change Password** hyperlink to display the **Current password**, **New password** and **Confirm password** fields.

![Change Password](image2)

5. Enter your **Current password**, and then enter a new password in the **New password** and **Confirm password** fields.

6. Click the **Save Password** button to update your password.
Configuring User Permissions

Introduction

User access to items within One Analytics is determined by:

- Ownership: Whether or not the user owns the item.
- User Site Role: Whether or not the user’s site role permits access to the item.
- Content Permissions: Whether or not the permissions assigned to the item extend to the user.

Users can only access content if they are granted permission through one of the above methods and are not explicitly denied access through one of the same methods.

Ownership Permissions

Owners have full access to content they create or publish to the One Analytics server. If ownership of an item changes, the original owner can only access the item subject to their site role and the content permissions.

Site Roles

All users must be assigned a site role by an administrator. The site role determines the level of access users have within the One Analytics server.

Users can be assigned one of the following site roles:

- Server Administrator
- Site Administrator
- Publisher
- Interactor*
- Viewer*
- Unlicensed*
- Viewer (can publish)
- Unlicensed (can publish).

*Unable to publish to the One Analytics server.
Configuring User Permissions

IMPORTANT NOTES:
The Interactor site role enables users to access self-service reporting, and should only be given to users who are authorised to use this function.

The Viewer site role enables users to access dashboards, but not to apply filters to them.

To enable users to access and filter dashboards, but prevent them from accessing self-service reporting, it is recommended that you give their user groups the Viewer site role, and then augment their permissions to include filtering and any other required functionality at a project or workbook level as required (see Configuring Content Permissions on page 47).

To assign a site role to users:

1. Log in to One Analytics Server.
2. Select the Users tab to display a list of all current One Analytics users.
3. Select the required users to enable the Actions drop-down.
4. From the **Actions** drop-down, select **Site Role** to display the **Site Role** dialog.

5. Select a site role from the drop-down.

 TIP: Hover the cursor over the **i** icon to display a permission level matrix in a tool-tip.

6. Click the **Change Site Role** button to assign the users the selected role.

User Groups

Adding users to groups facilitates the configuring of content permissions. Group members hold all permissions granted to that group, provided that they fall within the remit of the user’s site role and are not denied them through other group affiliations.

MORE INFORMATION:
Configuring Content Permissions, page 47.

Adding New Groups

To add a new group:

1. Log in to One Analytics Server.
2. In the **Groups** tab, click the **New Group** button to display the **New Group** dialog.
3. Enter a name for the group and click the **Create** button to add the group to the list.
Configuring User Permissions

Adding Users to a Single Group

To add users to a group:

1. Log in to One Analytics Server.
2. In the **Groups** tab, click the name of the required group to display the group screen.

3. Click the **Add Users** button to display the **Add Users** dialog.
4. Select the required users from the list, and click the **Add Users** button to close the dialog and display the selected users in the group screen.

Adding Users to Groups

To add users to groups:

1. Log in to One Analytics Server.
2. In the **Users** tab, select the required users to enable the **Actions** drop-down.
3. In the *Actions* drop-down, select **Group Membership** to display the **Group Membership** dialog.

4. Select the required groups.

5. Click the **Save** button to save the changes and close the dialog.
Configuring Content Permissions

Introduction

User access to items within One Analytics is determined by:

- Ownership: Whether or not the user owns the item.
- User Site Role: Whether or not the user’s site role permits access to the item.
- Content Permissions: Whether or not the permissions assigned to the item extend to the user.

Users can only access content if they are granted permission through one of the above methods and are not explicitly denied access through one of the same methods.

MORE INFORMATION

How Permissions are Evaluated: http://onlinehelp.tableau.com/current/server/en-us/license_permissions_backgrnd.htm

Content permissions enable publishers to control who can access data sources, projects, views and workbooks at the individual item level.

Users and groups can be assigned the following levels of permissions within content:

<table>
<thead>
<tr>
<th>Permission Level</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allowed</td>
<td>The allowed level contains sublevels enabling you to control whether users can view, publish or edit content, or change the content permissions themselves.</td>
</tr>
<tr>
<td>Unspecified</td>
<td>The unspecified level prevents a user or group from accessing the content if no other permission grants them access.</td>
</tr>
<tr>
<td>Denied</td>
<td>The denied prevents a user or group from accessing the content regardless of their other permissions.</td>
</tr>
</tbody>
</table>

Project-Level Permissions

The permissions assigned to a project are used as the default permissions for all content within that project. Data sources and workbooks within a project can have their own unique set of permissions if required.

Project permissions can only be set by administrators and project leaders. To enable users to interact with data sources but not access self-service reporting, grant the users or groups the same permission settings that are displayed in the graphics in step 8 of Adding Project Permissions on page 48, or step 5 of Editing Project Permissions on page 50.

NOTE: One Analytics contains a default project that cannot be deleted. This project is the template for all other projects you create. It is recommended that you delete all permissions from the default project so that new projects have no preassigned permissions.
Adding Project Permissions

To add permissions to a project:

1. Log in to One Analytics Server.
2. Open the Permissions dialog:
 - If the projects are displayed as a list, click the ellipsis next to the required project name and select Permissions.
 - If the projects are displayed as thumbnails, move the cursor over the required project, then click the ellipsis and select Permissions.
To edit the permissions for multiple projects, select the check box for each required project, and then select **Permissions** from the **Actions** menu.

The **Permissions** dialog is displayed. Users and groups currently permitted to access the project are listed in the **User / Group** column.

3. Click **Add a user or group rule** to display a list of groups.

4. To add a user, select **User** from the right-hand drop-down.
5. Select the required group or user from the main drop-down to add them to the Permissions table.

6. Select the permissions role for the group or user from the Project drop-down.

7. Select the default permissions for the group or user from the Workbooks and Data Sources drop-downs.

8. If required, click the Project, Workbooks or Data Sources headers to view an advanced permission configuration panel giving you more control over the permissions assigned.

IMPORTANT NOTE: The settings in the following graphic should be replicated to provide a group or user with the ability to filter data sources and prevent them from accessing self-service reporting. For more information on the permissions settings, refer to https://onlinehelp.tableau.com/current/online/en-us/license_permissions.htm

9. Click the Save button to assign the permissions.

10. Close the dialog.

Editing Project Permissions

To edit existing user or group permissions in a project:

1. Log in to One Analytics Server.
2. In the Projects panel, select the required project to enable the Actions drop-down.

3. From the Actions drop-down, select Permissions to display the Permissions dialog. Users and groups currently permitted to access the project are listed in the User / Group column.

4. In the User / Group column, click the ellipsis next to the name of the required group or user and select edit to activate the permission options drop-downs.

5. As required, click the Project, Workbooks or Data Sources headers to view an advanced permission configuration panel giving you more control over the permissions assigned.

IMPORTANT NOTE: The settings in the following graphic should be replicated to provide a group or user with the ability to filter data sources and prevent them from accessing self-service reporting. For more information on the permissions settings, refer to https://onlinehelp.tableau.com/current/online/en-us/license_permissions.htm
6. Click the **Save** button to assign the new permissions.
7. Close the dialog.

Deleting Users or Groups from a Project

To delete users or groups from a project:

1. Log in to One Analytics Server.
2. In the **Projects** panel, select the required project to enable the **Actions** drop-down.

3. From the **Actions** drop-down, select **Permissions** to display the **Permissions** dialog. Users and groups currently permitted to access the project are listed in the **User / Group** column.

4. In the **User / Group** column, click the ellipsis next to the name of the required group or user and select **Delete** to display the **Delete** button.

5. Click the **Delete** button to remove the group or user.
6. Close the dialog.
Locking Workbook and Data Source Permissions to the Project

Data sources and workbooks automatically adopt the default permissions of their parent project. You can control whether users can change the permissions of individual data sources and workbooks by locking or unlocking them within the project.

It is recommended that while the majority of users are familiarising themselves with One Analytics, you lock permissions to the project to prevent users setting or changing individual workbook or data source permissions. You can unlock these at a later date.

NOTE: This must be done for each project. Locking workbook and data source permissions to the default project does not cause future projects to inherit this setting.

To lock or unlock the ability to set different data source and workbook permissions to different items within a project:

1. Log in to One Analytics Server.
2. In the **Projects** panel, select the required project to enable the **Actions** drop-down.
3. From the **Actions** drop-down, select **Permissions** to display the **Permissions** dialog.
4. Click the button with the padlock icon to display the **Content Permissions in Project** dialog.

 NOTE: This will read **Managed by the owner** or **Locked to the project** depending on whether the data sources and workbooks are locked or not.

5. Select the required radio button and click the **Save** button.

Workbook-Level Permissions

By default, workbooks take on the permissions assigned to the parent project. To assign permissions at the workbook level, the workbooks must be unlocked within the project. For more information, see [Locking Workbook and Data Source Permissions to the Project](#) on page 53.

To enable users to interact with data sources but not access self-service reporting, grant the users or groups the same permission settings that are displayed in the graphics in step 9 of [Adding Workbook Permissions](#) on page 54, or step 7 of [Editing Workbook Permissions](#) on page 56.

Adding Workbook Permissions

To apply new permissions to a workbook:

1. Log in to One Analytics Server.
2. Locate the required workbook either by selecting the **Workbooks** tab or by selecting the project in which the workbook resides.
3. Select the workbook to enable the **Actions** drop-down.
4. From the **Actions** drop-down, select **Permissions** to display the **Permissions** dialog. Users and groups currently permitted to access the workbook are listed in the **User / Group** column.

5. Click **Add a user or group rule** to display a list of groups.

6. To add a user, select **User** from the right-hand drop-down.

7. Select the required group or user from the main drop-down to add them to the **Permissions** table.
8. Select the permissions role for the group or user from the Permissions drop-down.

The View, Interact and Edit permissions are automatically populated.

9. If required, customise the permissions using the check boxes under the appropriate icons to set the individual permissions to Allowed, Denied or Unspecified.

IMPORTANT NOTE: The settings in the following graphic should be replicated to provide a group or user with the ability to filter data sources and prevent them from accessing self-service reporting. For more information on the permissions settings, refer to https://onlinehelp.tableau.com/current/online/en-us/license_permissions.htm

10. Click the Save button to assign the permissions.

11. Close the dialog.

Editing Workbook Permissions

To edit workbook permissions:

1. Log in to One Analytics Server.

2. Locate the required workbook either by selecting the Workbooks tab or by selecting the project in which the workbook resides.
3. Select the required workbook to enable the **Actions** drop-down.

![Image of the Analytics system interface showing the 'Actions' drop-down and a workbook list]

4. From the **Actions** drop-down, select **Permissions** to display the **Permissions** dialog. Users and groups currently permitted to access the workbook are listed in the **User / Group** column.

![Image of the Permissions dialog with a list of groups and their permissions]

5. In the **User / Group** column, click the ellipsis next to the name of the required group or user and select **Edit** to activate the **Permissions** options drop-down.

![Image of the Permissions dialog with a list of groups and their permissions, where one user group is selected and Edit is highlighted]
6. If required, select the permissions role for the group or user from the Permissions drop-down.

![Permissions drop-down]

The View, Interact and Edit permissions are automatically populated.

![Permissions table]

7. If required, customise the permissions using the check boxes under the appropriate icons to set the individual permissions to Allowed, Denied or Unspecified.

IMPORTANT NOTE: The settings in the following graphic should be replicated to provide a group or user with the ability to filter data sources and prevent them from accessing self-service reporting. For more information on the permissions settings, refer to https://onlinehelp.tableau.com/current/online/en-us/license_permissions.htm

![Permissions table with customised settings]

8. Click the Save button to assign the permissions.

9. Close the dialog.

Deleting Users or Groups from Workbooks

To delete users or groups from workbooks:

1. Log in to One Analytics Server.

2. Locate the required workbook either by selecting the Workbooks tab or by selecting the project in which the workbook resides.
3. Select the workbook to enable the **Actions** drop-down.

4. From the **Actions** drop-down, select **Permissions** to display the **Permissions** dialog. Users and groups currently permitted to access the workbook are listed in the **User / Group** column.

5. In the **User / Group** column, click the ellipsis next to the name of the required group or user and select **Delete** to display the **Delete** button.

6. Click the **Delete** button to remove the group or user.

7. Close the dialog.
Importing Datasets using the One Analytics Import Tool

Introduction

The One Analytics Import Tool enables you to import complementary datasets into the One Analytics data warehouse. For example, the import tool can be used with open data such as the Indices of Multiple Deprivation and geographical polygon and shape files (converted into CSV format) to support the creation of geographical heat maps.

Imported data can be used and viewed on its own, however imported data is best used alongside your Capita One data sources. This is achieved by blending the imported data with your existing data sources.

You must have a Pulse licence to use the import tool.

MORE INFORMATION:
Blending:
TDS files:

The importation process consists of three stages:

1. Obtain the required dataset in a CSV file.
2. Use the One Analytics Import Tool to import the CSV file.
3. Create a TDS file in One Analytics.

If the dataset you are importing contains statistical neighbour IDs, you can indicate this during the import. Statistical neighbours are other LAs with characteristics similar to yours used for benchmarking progress. Including the IDs of your statistical neighbours enables you to perform comparisons within One Analytics between your authority and similar LAs.

IMPORTANT NOTES:

Ensure the CSV file to be imported has a header row, as this is automatically removed during import. If your dataset does not have a header row, you will lose the first row of data.

Imported files must not have commas in the data or data headings. Commas are used as the file delimiter, so the import tool will treat any comma found in the data set as the start of a new heading or data item and cause errors in the data import.

You can only have 20 imported datasets or a maximum of 200MB of data in the import tool at any time. If you already have 20 imported datasets, or you attempt an import that will take you over the data limit, you must delete an existing dataset before you can import a new one. Your data usage is displayed at the bottom of the import tool:
Deleting a dataset from within the import tool removes the imported dataset from One Analytics.
It does not update any data source (TDS) files that reference the data warehouse table created,
these will need to be removed manually as they will no longer function.

NOTE: Importing GIS data does not count towards your data limits.

Standard Datasets

To import a dataset for use with One Analytics:

1. Open the One Analytics Import Tool.

2. Click the **Find File** button to display the **Open** dialog.

3. Navigate to the required dataset, select it, and click the **Open** button. The **Path** field is automatically completed.

4. Enter a **Description** for the dataset. This is displayed to users who search for the dataset in an SQL table when queries are run. It should include the source of the dataset.

5. To include statistical neighbours:
 a. Select the **Tag Statistical Neighbour** check box.
 b. From the drop-down, select the name of the column in the dataset that contains the IDs of the Local Authorities you use as statistical neighbours.
 c. In the free text field next to it, list the IDs of these Local Authorities separated by commas.

6. Click the **Import** button. After the import has completed, an **Import Summary** dialog is displayed.

7. Create the TDS file in One Analytics:
 You can create a new data source for the imported dataset, and then blend it with other data sources as required, or you can add it to an existing data source.
WARNING: If you are adding the dataset to an existing data source, you should save the updated data source as a new TDS file instead of just publishing over the existing one. This prevents any content that uses that data source from being negatively affected. You can then use and publish the new combined data source where required.

a. Sign in to One Analytics Desktop.
 - If you are adding the dataset to an existing data source, connect to that data source first, then select the **Data Source** tab at the bottom of the screen.
 - If you are creating a new data source, in the **Connect** menu on the home screen, select **Microsoft SQL Server**.

b. In the **Microsoft SQL Server** dialog, enter the credentials for the One Analytics data warehouse (OneAnalyticsDW) and log in. The **Data Source** screen is displayed.

c. In the **Table** panel on the left-hand side of the screen, click the magnifying glass icon and enter the name of the imported data into the search field to display the imported dataset.

d. Drag the dataset from the **Table** panel into the large white panel, highlighted with an orange border.
e. If you are adding the dataset to an existing data source, you will need to create a join between the dataset and a dimension in the data source. The Join dialog is automatically displayed:

Select the appropriate join type and close the dialog.

f. Update the name (recommended).

g. Save or publish the data to create a new TDS file, select the Sheet 1 tab and either:
 - save the data source locally: In the toolbar, select Data | [data source name] | Add to Saved Data Sources.
 - or
 - publish the data source to the server: In the toolbar, select Data | [data source name] | Publish to Server... For more information on publishing data sources, see Publishing Data Sources to the One Analytics Server on page 20.
GIS Datasets

Introduction
Shapes are polygons created using GIS (Geographic Information System) data to denote specific geographical areas. The shape’s outline is defined by a sequence of points. Each point within the outline is determined by a row of data containing the longitude (GIS_Point_Longitude) and latitude (GIS_Point_Latitude) of the point, and a sequence number (GIS_Point_Order). The longitude and latitude determine the geographical positioning of the point. The sequence number determines where the point occurs in the shape outline. The first and last points in the sequence must have the same latitude and longitude to ensure the shape is complete. This data is used within One Analytics to create shapes for different purposes, e.g. catchment areas:

Before GIS data can be imported, your shape files must be in a CSV format understood by One Analytics. Your LA GIS team can use commonly available tools (such as those provided within ESRI) to convert the shape files you want to use into CSV format.

Data Format
Before importing shape files, they must be in CSV format. There are a number of source formats available. These depend on the GIS toolset being used. The most common source formats are shape files (.shp), which are created by ESRI products, and MAP and TAB files (.map and .tab), which are created by MapInfo. There are also open formats, such as GML (Geographic Markup Language).

ESRI, MapInfo and open products like QGSI (http://www.qgis.org/en/site/) are all able to create CSV files.

NOTE: These products include their own instructions for producing CSV files.

The CSV files are normally produced as two separate files:
- Nodes/Points: The individual longitude and latitude points and sequences that make up each shape.
- Attributes/Features: The name, code and other items of data for each shape.

CSV files may also include other detail, depending on the source and tool used.

To enable CSV files to be used in One Analytics, they must be combined in a certain way so that a single row of data exists for each node within a shape, and that each of these rows contains the attribute data for the shape. This ensures that each shape contains all the required nodes, and each node is linked to the required shape. See [Example Shape Files](#) on page 66 for examples.
Importing Datasets using the One Analytics Import Tool

File Format

Each shape has a code (GIS_Code) and a name (GIS_Name) that are used to identify the shape and for reference within visualisations. For more information on working with shapes, see Using Maps within One Analytics on page 81.

GIS data is stored in a single dataset to which any new data is added. All imported data must conform to the following structure to ensure that the shape can be created from the aforementioned data items and to avoid the duplication or overwriting of existing shape data. To avoid import errors, you must ensure that the new dataset columns are organised in the following order and match the data type description before running the import:

<table>
<thead>
<tr>
<th>Column</th>
<th>Data Type</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIS_Source</td>
<td>Maximum of five characters to identify the source, e.g. ONS.</td>
<td>Attribute</td>
</tr>
<tr>
<td>GIS_Information_Type</td>
<td>GIS shapes set name. Maximum 255 characters but should be kept as brief as is practical as it is displayed throughout One Analytics, e.g. ‘Authority School Catchments’. If the data being imported is likely to change and you want to retain both old and new data, it is recommended that you include additional information, such as the date, in the set name, e.g. ‘2016 Authority School Catchments’.</td>
<td>Attribute</td>
</tr>
<tr>
<td>GIS_Unique_Id</td>
<td>Integer value used to identify each shape within the data being imported.</td>
<td>Attribute/Node</td>
</tr>
<tr>
<td>GIS_Code</td>
<td>Code used to identify the shape. Should be the same for each row of data within a shape. Maximum 50 characters.</td>
<td>Attribute/Node</td>
</tr>
<tr>
<td>GIS_Name</td>
<td>Name used to identify the shape. Should be the same for each row of data within a shape. Maximum 50 characters.</td>
<td>Attribute</td>
</tr>
<tr>
<td>GIS_Name_Welsh</td>
<td>Welsh name used to identify the shape. Should be the same for each row of data within a shape. Maximum 50 characters.</td>
<td>Attribute</td>
</tr>
<tr>
<td>GIS SHAPE NAME</td>
<td>Additional name that may be used for the shape. Maximum ten characters.</td>
<td>Attribute</td>
</tr>
<tr>
<td>GIS_MAIN_LATITUDE</td>
<td>Latitude of the centre point of the shape. In a numeric format of 28.17, i.e. maximum 28 characters to the left of the decimal point and 17 to the right.</td>
<td>Attribute</td>
</tr>
<tr>
<td>GIS_MAIN_LONGITUDE</td>
<td>Longitude of the centre point of the shape. In a numeric format of 28.17, i.e. max 28 characters to the left of the decimal point and 17 to the right.</td>
<td>Attribute</td>
</tr>
</tbody>
</table>
Importing Datasets using the One Analytics Import Tool

<table>
<thead>
<tr>
<th>Column</th>
<th>Data Type</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIS_Point_Id</td>
<td>ID for the point within the shape. This is used to separate sections of a shape that are not held as one, e.g. where a shape is subdivided by a geographical object such as a river.</td>
<td>Node</td>
</tr>
<tr>
<td>GIS_Point_Order</td>
<td>Integer that identifies the numerical position in the sequence of the points that create the shape. One Analytics uses this to sequentially plot the edges of the shape as described previously.</td>
<td>Node</td>
</tr>
<tr>
<td>GIS_Point_Latitude</td>
<td>Latitude of the point within the shape. In a numeric format of 28.17, i.e. maximum 28 numbers to the left of the decimal point and 17 to the right.</td>
<td>Node</td>
</tr>
<tr>
<td>GIS_Point_Longitude</td>
<td>Longitude of the point within the shape. In a numeric format of 28.17, i.e. maximum 28 numbers to the left of the decimal point and 17 to the right.</td>
<td>Node</td>
</tr>
<tr>
<td>GIS_Last_Updated_Date</td>
<td>Date to identify when the data was created, received or last updated.</td>
<td>Created</td>
</tr>
</tbody>
</table>

Example Shape Files

The following examples are of the two files produced for a set of shapes, taken from the ONS LSOA data from 2011:

```
Example Attribute/Feature CSV File Content

The code for each shape The English name of the shape The Welsh name of the shape The unique ID of the shape The latitude of the centre point of the shape The longitude of the centre point of the shape

<table>
<thead>
<tr>
<th>LSOA11CD LSOA11NM</th>
<th>LSOA11NMW</th>
<th>LSOA_2011_EW_BGC_V2_ID</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>E01000001 City of London 001A</td>
<td>City of London 001A</td>
<td>0</td>
<td>51.158</td>
<td>-0.5968</td>
</tr>
<tr>
<td>E01000002 City of London 001B</td>
<td>City of London 001B</td>
<td>1</td>
<td>51.5182</td>
<td>-0.0926</td>
</tr>
<tr>
<td>E01000003 City of London 001C</td>
<td>City of London 001C</td>
<td>2</td>
<td>51.5217</td>
<td>-0.0958</td>
</tr>
<tr>
<td>E01000005 City of London 001E</td>
<td>City of London 001E</td>
<td>3</td>
<td>51.5135</td>
<td>-0.0758</td>
</tr>
<tr>
<td>E01000006 Barking and Dagenham 01A</td>
<td>Barking and Dagenham 01A</td>
<td>4</td>
<td>51.539</td>
<td>-0.0834</td>
</tr>
<tr>
<td>E01000007 Barking and Dagenham 01A</td>
<td>Barking and Dagenham 01A</td>
<td>5</td>
<td>51.5404</td>
<td>0.077</td>
</tr>
<tr>
<td>E01000008 Barking and Dagenham 01B</td>
<td>Barking and Dagenham 01B</td>
<td>6</td>
<td>51.5401</td>
<td>0.0697</td>
</tr>
<tr>
<td>E01000009 Barking and Dagenham 01B</td>
<td>Barking and Dagenham 01B</td>
<td>7</td>
<td>51.5405</td>
<td>0.0837</td>
</tr>
<tr>
<td>E01000010 Barking and Dagenham 01C</td>
<td>Barking and Dagenham 01C</td>
<td>8</td>
<td>51.5369</td>
<td>0.0782</td>
</tr>
<tr>
<td>E01000011 Barking and Dagenham 01C</td>
<td>Barking and Dagenham 01C</td>
<td>9</td>
<td>51.5431</td>
<td>0.0807</td>
</tr>
</tbody>
</table>
```
Importing Datasets using the One Analytics Import Tool

The following example displays the layout of files combined ready for import:

Example Node/Point CSV File Content

<table>
<thead>
<tr>
<th>LSAO_2011_EW_B6C_V1_ID</th>
<th>sub_polygon_id</th>
<th>point_order</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>51.5216</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>51.5203</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>51.5205</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>51.5206</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>51.5207</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>51.5198</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>51.5189</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>51.5182</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>51.5188</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>51.5196</td>
</tr>
</tbody>
</table>

Example Combined CSV File Content

The right-hand side shows the layout of the file content:

<table>
<thead>
<tr>
<th>GIS_Source</th>
<th>GIS_Information_Type</th>
<th>GIS_unique_ID</th>
<th>GIS_Code</th>
<th>GIS_Name</th>
<th>GIS_Name_Welsh</th>
<th>GIS_Shape_Gis</th>
<th>Lat</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONS</td>
<td>LSOA Data 2011</td>
<td>656314</td>
<td>E01015693-1</td>
<td>Luton 007A-1</td>
<td>Luton 007A-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONS</td>
<td>LSOA Data 2011</td>
<td>656315</td>
<td>E01015693-1</td>
<td>Luton 007A-1</td>
<td>Luton 007A-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONS</td>
<td>LSOA Data 2011</td>
<td>656316</td>
<td>E01015693-1</td>
<td>Luton 007A-1</td>
<td>Luton 007A-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONS</td>
<td>LSOA Data 2011</td>
<td>656317</td>
<td>E01015693-1</td>
<td>Luton 007A-1</td>
<td>Luton 007A-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONS</td>
<td>LSOA Data 2011</td>
<td>656318</td>
<td>E01015693-1</td>
<td>Luton 007A-1</td>
<td>Luton 007A-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONS</td>
<td>LSOA Data 2011</td>
<td>656319</td>
<td>E01015693-1</td>
<td>Luton 007A-1</td>
<td>Luton 007A-1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WARNING: If you import any new rows of data with a **GIS_Information_Type** that already exists in the master dataset, it will erase all current rows containing that value and replace them with the new rows only. If you need to add new GIS data to an existing **GIS_Information_Type**, you must re-import all existing data for that type at the same time. Other information types are unaffected.
Importing GIS Data

To import GIS data:

1. Open the One Analytics Import Tool.

2. Click the **Find File** button to display the **Open** dialog.
3. Navigate to the required dataset, select it, and click the **Open** button.
4. Select the **GIS Data** check box.
5. Click the **Import** button to display the **Confirm Import** warning dialog.
6. Click the **Yes** button. After the import has completed, an **Import Summary** dialog is displayed.
Opening an Imported Dataset in One Analytics Desktop

To connect to a dataset in One Analytics:

1. In One Analytics Desktop, display the Open dialog:
 - Click the More… hyperlink in the Connect panel in the Data Source screen:

2. If prompted, enter your Username and Password in the Sign In dialog and click the OK button.

Blending Imported Data with Existing Data Sources

Data that has been imported through the One Analytics Import Tool can be visualised directly in One Analytics on its own or combined with an existing Capita-issued data source, e.g. to compare your LA’s attainment results with those of neighbouring authorities. Data sources are combined through blending. Blending enables the data in one data source to be augmented by related data in a separate data source.

MORE INFORMATION:

Removing Datasets

The One Analytics Import Tool has 20 available import slots or a maximum data limit of 200MB. The number of import slots in use (Open Data Sets) are displayed next to your current Data usage at the bottom of the import tool:

If you have reached the maximum permitted Open Data Sets or Data usage allowance, you must delete an existing dataset from within the import tool before you can import a new one. You will no longer be able to access a deleted dataset in One Analytics, unless you re-import it.

NOTE: When deleting a dataset, the TDS file created during the import will no longer function and should be manually removed from your local machine.

To remove an existing dataset:

1. Open the One Analytics Import Tool.
2. Select the **Delete Dataset** tab to display a list of all currently imported datasets.

3. Select the datasets you want to delete.

4. Click the **Delete Data Set** button to display the **Are you sure you want to delete** dialog.

5. Click the **Yes** button to remove the datasets.

The **Open Data Sets** and **Data usage** values are updated to reflect the removal of the dataset from the One Analytics Import Tool.
The One Analytics Report Catalogue

Introduction

The One Analytics Report Catalogue contains dashboards created by Capita One that can be downloaded and edited for use within One Analytics. It is intended to be used mainly by nominated members of staff at the LA who will edit and distribute the content as required.

NOTE: The report catalogue will be updated whenever new dashboards are created by Capita One for LA use.

Dashboards downloaded from the report catalogue must be pointed to the appropriate One Analytics data sources before they can be used within your Local Authority. You can then edit them to meet local requirements, and share them with other users via the One Analytics server. You should test that the dashboards, and elements such as tooltips, work on your system before distributing them to users through projects on the server.

Users log in to the report catalogue using their My Account username and password.

IMPORTANT NOTE: Local Authority edits to dashboards downloaded from the report catalogue are not supported by Capita One. The Application Support team will attempt to answer any queries about edits you have made to these dashboards, but as part of the resolution process you might be required to revert to the latest version of the Capita One dashboard available from the report catalogue, and reapply your changes.

The Capita One Professional Services team provides additional services offering support with editing dashboards downloaded from the report catalogue or creating new dashboards to meet your local needs. Speak to your account manager for further details.

The report catalogue also hosts the One Analytics Data Source Utility, which enables you to migrate certain custom fields from existing data sources into the updated versions provided with new OA releases.

The Report Catalogue

Downloading Reports

To download reports from the report catalogue:

1. In a web browser, navigate to the report catalogue login screen at https://oneanalytics.capita-one.co.uk.
2. Enter your My Account username and password and click the Sign In button to display the One Analytics - Report Catalogue Home Page and all available reports.

NOTE: If you have forgotten your My Account login credentials, you can reset them through the My Account login screen: https://myaccount.capita-cs.co.uk/login/
3. To display the **Categories** panel, click the arrow button on the left-hand side of the screen.

NOTE: The size of the browser window you are using determines whether or not the **Categories** panel is automatically displayed. You can filter the reports displayed on the home page by deselecting the categories you do not need.
4. Navigate to the required report and click the report name to display the report details.

5. Click the Download button to save the report to your default download location as ‘[report name].twb’.

Configuring the Report for use with your Data

Content downloaded from the report catalogue must be configured for use with your data.

To configure a report:

1. Open the report in One Analytics Desktop. If a Microsoft SQL Server dialog is displayed, cancel it.
2. From the menu bar, select Data | New Data Source | Tableau Server.
3. Locate and select the required data source for the reports.

NOTE: If the report uses multiple data sources, repeat steps 2 and 3 for each data source required.

4. Navigate to the first visualisation tab.
5. From the menu bar, select Data | Replace Data Source to display the Replace Data Source dialog.

NOTE: If the report uses multiple data sources, you will need to repeat steps 5 to 8 for each data source.
6. In the **Current** field, ensure that the original data source is selected.

7. In the **Replacement** field, ensure that the data source that resides on your One Analytics server is selected.

8. Click the **OK** button.

 NOTE: The visualisation might refresh at this point, if connection information is embedded in the One analytics data source.

9. Repeat steps 5 to 8 for all remaining data sources.

10. Close the original data sources by right-clicking the required data source in the **Data** tab and selecting **Close**.

11. Save the workbook locally or publish it to the One Analytics server as required.

The Data Source Utility

Introduction

The Data Source Utility enables customisations to be migrated from your existing data sources to updated versions issued with new releases. It can be used with any data source from April 2017 onwards.

The Data Source Utility is hosted within the One Analytics Report Catalogue, at https://oneanalytics.capita-one.co.uk.

The utility compares the data source you have customised with the target data source. Elements that exist in the customised data source but cannot be found in the target data source are migrated.

The following data source elements are migrated:

- **Calculated fields**

 Both user-created and duplicated calculated fields are migrated. The migration copies the metadata, logic, name, caption and type. It does not validate the calculated fields against the new data source: if the calculation contains an element that has been removed from the target version, it will not work. Refer to the *One Analytics Release Notes* for information of data source changes.

- **Connection details**

 This migrates the server, database and username details. It does not migrate the password. If the data source has multiple connections, details for all connections are migrated.

- **Data source filters**

 Filters applied to the data source are migrated. You can edit or remove them in the new data source as required.

- **Folders**

 Any new folders created within the data source are transferred, along with any user-created fields they contain. If you have moved Capita fields to a new folder, they will not be moved into the new folder in the target data source.

- **Groups**

 All groups are migrated.
Hierarchies

All new hierarchies and the items they contain are migrated.

NOTE: If an item has been moved from the data source to the data warehouse after you added it to a hierarchy, it will not be migrated as part of the hierarchy. You will need to add it in again. It will then remain in the hierarchy in future migrations.

Parameters

Any values that have been changed in existing Capita-supplied parameters are migrated. User-created parameters are only migrated if they are referenced in a custom calculated field.

Sets

All sets are migrated.

Migrating Fields with the Data Source Utility

To migrate fields to a new data source:

1. Log in to the One Analytics Report Catalogue:
 a. In a web browser, navigate to https://oneanalytics.capita-one.co.uk.
 b. Log in using your My Account credentials.
2. In the header bar, select the Data Source Utility tab.

 ![Data Source Utility](image)

3. Click the Choose File button to locate and select the data source from which you want to migrate the fields.

 NOTE: You can only select TDS files.

4. From the Migrate to version drop-down, select the version of the data source you want to update.
5. Click the **Migrate** button to display the **Changes migrated** panel containing a list of items migrated to the requested version.

NOTES: Migrated items are indicated by their caption, or if no caption is available, their original name.

The list of migrated changes does not include connection customisation, changes to values in existing parameters or new folders. These changes are not considered to be custom elements. They are still migrated, even though they are not listed in the Changes migrated panel.

6. Click the **Download** button to download the new data source.
11 Updating Aspect Parameters

Aspect parameters are used in the Attainment data source. They contain a list of all aspects within your data warehouse. They are used in the Levels of Progress calculations. Before you can use them, you must update them so they are populated with the aspects currently in your database; this is not done automatically.

NOTE: These steps must be repeated each time you add a new aspect to the One system.

To update the aspect parameters:

1. Connect to any worksheet that uses the required data source.
2. Open the worksheet to display the [Dimensions](#), [Measures](#) and [Parameters](#) panes under the [Data](#) tab.
3. Ensure the required data source is selected in the [Data](#) tab.
4. In the [Parameters](#) pane, expand the [Levels of progress](#) directory to display the two [Aspect Name Parameters](#).

5. Right-click **Aspect Name Parameter 1** and select **Edit...** from the menu to display the **Edit Parameter [Aspect Name Parameter 1]** dialog.

6. If the **List of values** table is already populated, click the **Clear All** button to depopulate the table.

7. Click the **Add from field** button to display a list of dimensions.
8. Select Aspect Name to populate the List of values table with the aspects in the data source.

NOTE: If Aspect Name is not displayed in the list, set the parameter Data Type to String.

9. Click the OK button to close the dialog.

10. Repeat steps 5-9 for Aspect Name Parameter 2.
Using Maps within One Analytics

Introduction

One Analytics enables you to use geospatial data held within the data sources to display information in map format. You can create two types of map:

Polygon Maps

Polygon maps compare information between different areas or polygons on a map. Polygons are formed based on geographical areas, and data is selected and plotted against these areas.

Point Maps

Point maps are used to identify clusters or patterns within an area. Latitudinal and longitudinal points are plotted on the map, and significance can be given to the different points through colour or size.
Plotting Polygons on Maps

You can plot polygons on a map using the GIS Shape Data data source. Entering longitude and latitude details in the Row and Column shelves in One Analytics automatically produces a map of the specified area, but unless it has data plotted against it, it is unlikely to be of benefit. You can blend the geographic data with other data sources to display information about the geographic area covered by the polygons in a variety of ways, e.g. heatmaps.

GIS Shape Data data sources can contain different types of shape data, e.g. Super Output area and school catchment areas. These are identified by the Information Type dimension. You should only attempt to plot polygons from one shape set onto a map, unless you are certain that they do not contain overlapping geographical areas, e.g. Super Output and school catchment shape sets are likely to overlap each other, so plotting them on the same map will result in conflict errors. If the data source contains overlapping shape sets or shape sets you do not need, you should filter them out (see Step 2) when creating the polygon map to avoid any conflict errors or unnecessary data processing. If you want to plot your data against multiple shape sets, it is recommended that you create a map for each set.

To create a new polygon map:

1. Connect to the GIS Shape Data data source.
2. If required, filter out any overlapping or unnecessary shape sets:
 a. Drag and drop the Information Type dimension from the Dimensions pane to the Filters card to display the Filter [Information Type] dialog.
 b. Select the required shape type from the list (in this case ONS LSOA Data 2011).
 c. Click the OK button to apply the filter and close the dialog.
3. If you wish to include or exclude certain areas or shapes from the map, e.g. if the Information Type shape set contains shapes that are not relevant to you because some shapes fall far outside your LA boundaries, you can apply a shape name filter.
To apply a shape name filter:

a. Drag and drop the **Shape Name** dimension from the **Dimensions** pane to the **Filters** card to display the **Filter [Shape Name]** dialog.

![Filter [Shape Name] dialog](image)

b. To manually select the individual shapes, select the **Select from list** radio button and then select the relevant check boxes.

c. To select all shapes for a certain area, in the **Wildcard** tab, enter the area name in the **Match value** field, and select the appropriate **Contains**, **Starts with**, **Ends with** or **Exactly matches** radio button to create the filter rules.

![Filter [Shape Name] with Wildcard tab](image)

d. If you want to exclude the area from the map, select the **Exclude** check box.

e. Click the **OK** button to apply the filter and close the dialog.
4. You should pause auto updates at this point to prevent repeated updates during shape plotting. To do so, click the **Pause Auto Updates** icon in the toolbar.

![Pause Auto Updates Icon](image)

5. Drag the **Shape Name** dimension from the **Dimensions** pane to the **Detail** field on the **Marks** card.

6. In the drop-down on the **Marks** card (currently displaying the **Automatic** option), select **Polygon** to display the **Path** field.

![Marks Card](image)

7. Drag and drop the **Point Order** dimension from the **Dimensions** pane onto the **Path** field on the **Marks** card.

8. Drag and drop the **Point Latitude** measure from the **Measures** pane to the **Rows** shelf and the **Point Longitude** measure from the **Measures** pane to the **Columns** shelf.
9. If you paused auto updates, click the **Resume Auto Updates** icon to display the shape map.

10. If required, change the shape border colours to make them more visible by clicking the **Color** field on the **Marks** card and then selecting an appropriate colour from the **Border** drop-down.
11. Select File | Save to save the shape map.

Using Polygon Maps to Create Geographical Heat Maps

After you have created a polygon map, you can plot data against it. In order to plot data against a shape, the GIS Shape Data data source must be blended with a secondary data source that contains the information you want to display.

Data blending combines related data from multiple data source types within a single worksheet using common dimensions. It does not create row-level joins, and should not be used to add new dimensions or rows to your data.

To plot data against a polygon map:

1. Open the workbook containing the polygon map.

2. Select Data | New Data Source | Tableau Server to open the data source you want to plot against the polygon map.
3. Click the appropriate worksheet tab at the bottom of the screen to display the polygon map.

4. Select Data | Edit Relationships… to display the Relationships dialog.

5. Ensure the Primary data source is the one containing the GIS shape data. When the two data sources are linked, One Analytics returns all of the records from the primary data source, and only the relevant ones from the secondary data source.
6. Select the **Custom** radio button to activate the **Add…** button.

7. Click the **Add…** button to display the **Add/Edit Field Mapping** dialog.

8. In the **Primary data source field** list, select either **Shape Code** or **Shape Name**.

9. In the **Secondary data source field** list, select the field that contains either the shape code or the shape name for the secondary data source.

10. Click the **OK** button to return to the **Relationships** dialog.

11. Click the **OK** button to close the **Relationships** dialog and save the relationship. The relationship is indicated by an orange chain link icon next to the linked field in the secondary data source’s **Dimensions** pane.

NOTE: If the icon depicts a grey broken link icon, the relationship is suspended and the map only displays information from a single data source. To restore the relationship, click the broken link icon.
12. To display information on the shape map, drag and drop the appropriate numerical measure, e.g. count or percentage, onto the **Color** field on the **Marks** card. The map is updated to display the information via a colour code and the measure is displayed in a new card.

Hovering the cursor over a shape displays all the information used in mapping the shape:

13. If required, change the colour scheme for the map:

a. Move the cursor over the measure card to display a menu icon in the top right-hand corner of the card.

b. Click the menu icon to display the configuration menu.
c. Select **Edit Colours…** to display the **Edit Colors [measure title]** dialog.

![Edit Colors Dialog]

d. Select the required colour options and click the **Apply** button to preview the changes.

e. Click the **OK** button to close the dialog.

14. If required, change the legend title:

a. Move the cursor over the measure card to display a menu icon in the top right-hand corner of the card.

![Measure Card with Menu Icon]

b. Click the menu icon to display the configuration menu.

c. Select **Edit Title…** to display the **Edit Legend Title** dialog.

![Edit Legend Title Dialog]

d. Enter the new title and click the **OK** button to save and close the dialog. The measure card is now updated with the new legend title.

Point Maps

Entering longitude and latitude details in the **Row** and **Column** shelves in One Analytics automatically produces a map of the specified area, but unless it has data is plotted against it, it is unlikely to be of benefit. You can blend the geographic data with other data sources to plot individual data points on a map.

NOTE: For this guide, the Attendance data source is used. When following these instructions, replace ‘Attendance’ with the appropriate data source name.
To create a point map:

1. Connect to the required data source and the GIS Shape Data data source.

2. In the Data tab, select the Attendance data source to display the Attendance Dimensions, Measures and Parameters panes.

3. In the Measures pane, locate the required latitude and longitude measures.

4. Drag and drop the required latitude measure on to the Rows shelf and the longitude measure on to the Columns shelf to display a single point on a map of the United Kingdom.

 TIP: You can also double-click the latitude and longitude measures to automatically populate the appropriate Rows and Columns shelves.

5. To create the individual points on the map, drag and drop the required Dimension on to the Details field in the Marks card, e.g. Student ID “(Full name (Id) (Student))” in the following image).

 A point is plotted for each unique data point in the dimension used, meaning that if you want a point for each individual student, the dimension you choose must include a unique identifier for each student, e.g. Student Id or Full name (Id) both include the unique Student ID reference, enabling distinct points to be plotted.
The points are then plotted based on the data provided by the dimension.

6. After you have plotted the Dimension, drag and drop the required Measures onto the Color or Size fields in the Marks card. The measure key is displayed in a card below the Marks card (AGG(% Any Absence) in the following examples) and the points on the map are updated accordingly.
Data displayed by Size:

Hovering the cursor over a point displays all data used in mapping the point:
Data displayed by Color:

TIP: You can change the colours by clicking the Color field on the Marks card to display a configuration menu, and then clicking the Edit Colors... button to display the Edit Colors dialog.

Geographic Roles

You should not assign Geographic Roles to cities, towns or full UK postcodes. The current version of Tableau, the software powering One Analytics, does not correctly recognise these fields.

For more information on how the Tableau software deals with Geographic Roles, see the link below, however the functionality described within the Custom Geocode Your Data section of the Tableau website does not apply to One Analytics. Use the Geographic Roles section of this chapter for instructions on dealing with them in One Analytics.

MORE INFORMATION:
Prepare your Geographic Field: http://onlinehelp.tableau.com/current/pro/desktop/en-us/help.htm#maps_geographicroles.html#GeoRoles
The Tableau software that powers One Analytics does not currently recognise full UK postcodes and might encounter issues with UK counties when assigning geographic roles.

If required, you can assign a geographic role to outbound postcodes, i.e. the first half of the postcode.

Assigning Geographic Roles to Outbound Postcodes

If you need to assign a geographic role to a postcode:

1. Open the required data source in a workbook.
2. Drag the *Latitude (generated)* measure to the *Rows* shelf and the *Longitude (generated)* measure to the *Columns* shelf to display a blank map of the world.

 NOTE: Fields that already have geographic roles assigned automatically populate the latitude and longitude data when you add them to the *Marks* card, and plot the data they contain as points on the map. To create a shape map, select *Filled Map* from the *Marks* card drop-down.

3. Split the postcode by right-clicking the *Address Postcode* dimension (Dimensions | Student - Current Address) and selecting *Transform | Split* to create two new calculated fields in the Dimensions pane.

4. Assign a geographic role to the *Address Postcode - Split 1* dimension by right-clicking the dimension and selecting *Geographic Role | ZIP Code/Postcode*.
5. In the menu bar at the top of the screen, select Map | Map Layers… to display the Map Layers pane.

6. Zoom in on the map until the Zip Code Boundaries and Zip Code Labels check boxes are activated.

TIP: You can zoom in and out of the map using the + and - buttons or your mouse scroll-wheel. Press the F key to enable you to pan across the map using the cursor.
7. Select the **ZIP Code Boundaries** check box and, if required, the **Zip Code Labels** check box to display and label the outbound postcode areas.

You can now plot data against the postcodes.

Example: Displaying the Number of Students in Each Outbound Postcode

This example explains how to display the number of students in each postcode area using colour. This example uses the Attainment data source. Adapt the instructions and data item names to suit your needs and the data source you are using.

To display the number of students in each outbound postcode:

1. In the relevant worksheet, drag the **Address Postcode - Split 1** calculated field from the dimensions pane to the **Detail** field on the **Marks** card. This adds the latitude and longitude fields to the appropriate **Columns** and **Rows** shelves if required, and plot data points on the map.
2. From the **Marks** card drop-down, select **Filled Map** to create polygons for each postcode area for which you hold student data.

3. Add the student count to the map:

 NOTE: You might want to pause auto updates for this step if you are dealing with a large amount of data. To do so, click the **Pause Auto Updates** icon.

 a. Drag the **Student Name (ID)** calculated field (Dimensions | Student Detail) to the **Color** field on the **Marks** card.

 b. Right-click the **Student Name (ID)** lozenge on the **Marks** card and select **Measure | Count (Distinct)**.

 c. If required, add a postcode or student count filter by copying the **CNTD(Student Name (ID))** or **Address Postcode - Split 1** lozenges from the **Marks** card to the **Filters** card.

 TIP: You can copy data items by holding the **Ctrl** key and clicking and dragging the lozenge to the desired location.
d. If you paused auto-updates, click the **Resume Auto Updates** icon to resume them and create the shape map.

Plotting Counties

Depending on how the counties are named and abbreviated in your data, they might not match up to the county names in One Analytics.

To plot counties:

1. Open the required data source in a workbook.
2. Ensure the **Address County** dimension (Dimensions | Student - Current Address) has a geographic role assigned by right-clicking the dimension and selecting **Geographic Role**. If **County** is not selected, select it.

3. Select **Filled Map** from the **Marks** card drop-down.
4. Drag the **Address County** dimension to the **Detail** field on the **Marks** card. This adds the latitude and longitude fields to the **Columns** and **Rows** shelves and create polygons for the counties that exist within the data source.

![Map with address county dimensions](image)

If there are any counties in the data source that did not match the names held within One Analytics, an **[n] unknown** button is displayed in the bottom right-hand corner of the map.

5. If there are any unknown counties:
 a. Click the button to display the **Special Values for [Address County]** dialog.
Using Maps within One Analytics

b. Select **Edit locations**... to display the **Edit Locations** dialog.

c. Ensure the **Country/Region** is set to United Kingdom.

d. Click the red **Unrecognized** text opposite the county name you want to match and begin typing the name of the county to display a list of matching counties, or click the down arrow to display a drop-down of all county names.

e. Select the appropriate county to create the match and add it to the **Matching Location** column.

f. Click the **OK** button to close the dialog and add the matched county polygons to the map. You can now display data at a county level within the map.
Adding SSRS Charts to the Report Viewer

Users can view SSRS reports in the One Analytics Report Viewer. They can be displayed either in isolation or alongside One Analytics charts.

The SSRS reports that can be accessed through the report viewer are located within a dedicated folder on the SSRS server. The folder, specified in the One Analytics Console web.config file, is set up by the deployment team during installation. It can only be changed by Capita One Technical Services.
Adding SSRS Charts to the Report Viewer

To make new reports available in the console, add them to the folder on the SSRS server using the **Upload File** button or by dragging the report files to the folder.

All reports uploaded to the folder are available in the console. Reports and data accessible through the console folder hold any permissions originally set against them in SSRS.

NOTE: If your Local Authority currently uses Capita One PRIME alongside One Analytics, the One permissions associated with your One account are applied to the reports. If you do not use PRIME, or if you have uninstalled or decommissioned PRIME, your Windows credentials are used. It is recommended that you replicate PRIME permissions in Windows before decommissioning it.
Introduction

IMPORTANT NOTE: The ETLs that process the matching routines are not run as part of the eStart or All ETLs jobs. This provides you with more control over the matching and conflict resolution process.

The following routines must be scheduled or manually processed separately for the eStart matching information to be processed correctly:

- **OA - eStart - People matching** (matching routine).
- **OA - eStart - Process Conflict Matching** (updates the member dimension with the matched Person_Ids).

One Analytics eStart matching enables eStart person records to be matched with their Capita One counterparts for reporting purposes within One Analytics. The methodology used for the matching process depends on whether you are using SQL Server Standard edition or SQL Server Enterprise edition.

TIP: You can determine whether you are running the Enterprise or Standard edition of SQL Server from the scores of your potential (fuzzy) matches. Scores below 50 indicate that you are running the Standard edition. Scores above 50 indicate that you are running the Enterprise edition. In both cases, the higher the score, the greater the likelihood that both records belong to the same person.

The Matching Process

In One Analytics, an eStart record is considered to be matched to a Capita One record when the two record IDs are entered into the One Analytics Data Warehouse together. The matching process consists of three steps:

1. Identifying previously matched records (ID matches)
2. Identifying records that match exactly
3. Fuzzy matching potential matches.

Records that do not have a matching record meeting the criteria in Step 1 are processed in Step 2 and then Step 3 as required. Records matched in Step 3 are stored for conflict processing in the eStart Matching utility. Records without a match meeting the criteria in Step 3 are considered to be unmatched, and are reprocessed in subsequent jobs.

Step 1: Identifying Previously Matched Records (ID Matches)

Where eStart records have already been manually matched to Capita One records through the population of a Capita One ID in the EMS_Id field in eStart, the system considers the two records to be matched and no further processing is undertaken. The two IDs are entered together into the data warehouse.

NOTE: If you use a custom label field or an external system company identifier to populate the EMS_Id field, this must have been configured in the eStart ETL parameter for the matching functionality to operate correctly. For more information, see *eStart* on page 130.

Step 2: Identifying Records that Match Exactly

Where an eStart record and a Capita One record contain the same values for a set of core identifiers, the system considers the two records to be matched. If more than one Capita One
record meets the exact match criteria, the records are stored for conflict processing. This is likely caused by duplicate One records. If only a single exact match is found, the records are paired and entered into the data warehouse as a match.

The following core identifiers must be identical in both records for an exact match to be created:

- First Name
- Surname
- DOB
- Gender
- House No
- Postcode.

For the name fields, legal name information is used. For the address fields, the current correspondence address from both records is used.

Step 3: Fuzzy Matching Potential Matches

If an exact match is not found between an eStart and a Capita One record, the system searches for similar records and presents them to the user as potential matches for conflict processing within the eStart Matching utility. Only potential matches meeting or exceeding a similarity threshold are stored for conflict processing. If no match is found for a record, it is classed as unmatched and is reprocessed the next time the ETL routine is executed. Unmatched records can also be manually processed in the eStart Matching utility.

The method for calculating similarity between records depends on whether you are running SQL Server Enterprise or Standard.

Fuzzy Matching in SQL Server Enterprise

Potential matches are evaluated using SQL Server Enterprise’s inbuilt algorithms. These do not depend on exact matches between the core identifiers, but score the overall similarity between the core fields of each record. This similarity is scored out of 100, where a higher score suggests a greater likelihood that the two records belong to the same person.

NOTE: Gender is not considered in SQL Server Enterprise’s fuzzy matching logic.

The similarity threshold has been set to 55, meaning any record pairs scoring less than 55 are judged to belong to different people and the match is discarded. The similarity threshold was set following extensive testing to provide the optimum balance between returning similar but incorrect matches and those that are correct but dissimilar. This value cannot be changed.

WARNING: The highest scoring match is not necessarily the correct one. Care must be taken when bulk-accepting fuzzy matches during conflict processing.

Fuzzy Matching in SQL Server Standard

Potential matches are evaluated by a custom-designed logic that compares and evaluates exact matches between the core identifiers in the eStart and Capita One records. Each combination of matches is ranked according to the likelihood of that combination correctly identifying two records belonging to one person.
This scoring is illustrated in the matrix below. A red × indicates that the data item is either not present or not identical in both the eStart and the One records. Similarity scores within SQL Standard matching range from 50 (an exact match) to 30 (lowest acceptable potential match).

You can use the matrix for guidance when bulk-accepting potential matches above a certain score.

Matching Conflicts

The One Analytics Console enables you to manually match records that have multiple exact matches, potential matches or no matches. The process is described in the following sections:

<table>
<thead>
<tr>
<th>Data Item</th>
<th>Match Scores</th>
<th>50</th>
<th>48</th>
<th>46</th>
<th>44</th>
<th>42</th>
<th>40</th>
<th>38</th>
<th>34</th>
<th>32</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student ID</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>First Name</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Surname</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>DOB</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>House No.</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Postcode</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

More Information:
- [Accessing the eStart Matching Utility](#) on page 108
- [Filtering the Results](#) on page 111
- [Processing Multiple Exact Matches](#) on page 112
- [Processing Fuzzy Matches](#) on page 112
- [Bulk Processing Fuzzy Matches](#) on page 115
- [Processing Unmatched Records](#) on page 116
- [Reprocessing Incorrectly Matched Records](#) on page 117
Accessing the eStart Matching Utility

To view potential matches and resolve multiple matches within the eStart Matching utility:

1. Log in to One v4 Online.

2. Click the **One Analytics** button to display the One Analytics login screen.
3. Enter your Capita One **Username** and **Password**, and click the **Log In** button to display the One Analytics landing screen.

4. Select the **Menu** tab to display the available console functions.
5. Click the **eStart Matching** button to display the **Matching Conflicts** screen. By default, any multiple exact matches are displayed. Records are displayed in the order that they were processed by the ETL job.

6. To view the fuzzy matches or unmatched records, select the required match type from the **Match Status** drop-down.

 NOTE: The **Primary Carer** information is displayed to assist in matching records where multiple exact or fuzzy matches exist for a record, and the name and address information alone is not sufficient.
Filtering the Results

If you want to match records for a particular person, you can use the search function to filter the eStart Member Record table. This enables you to display all records containing a certain ID, name or postcode.

To filter or search the table, enter the details into the search field and click the magnifying glass button to display records meeting the criteria.

To filter the table using a person’s full name, you must enter the name in ‘forename surname’ order.
Processing Multiple Exact Matches

Where the matching process has identified multiple records in One that exactly match the eStart record on all core identifiers, the system cannot select a single record to match. This is generally the result of duplicate records being created in One. In these situations, you must manually select the correct matches.

To process multiple exact matches:

1. Open the One Analytics eStart Matching utility.
2. Check that the Match Status is set to Multiple Exact Matches. If not, select it from the drop-down.

 eStart records with multiple matching One person records are displayed in the eStart Member Record table. Records are displayed in the order that they were processed by the ETL job.
3. In the Member ID column, click the + icon to display the matched One person record details.
4. Review the possible matches and click the accept button for the appropriate or up-to-date One person record. The match is completed and you are returned to the Manage Conflicts screen.

 Accept Button

NOTE: If you discard one or more exact matches to leave only a single exact match for the eStart member record, it is not automatically matched during the running of subsequent ETL jobs. This is due to the existence of discarded records associated with the eStart member record. The eStart record becomes unmatched, and you must process it as described in the Processing Unmatched Records section.

Processing Fuzzy Matches

Where eStart records have no exact match, but at least one Capita One record meets or exceeds the similarity threshold (lowest acceptable similarity score), the records can be manually matched.

Potential matches are given a score indicating how likely it is that both records belong to the same person. This is displayed in the Score column of the matched One person record. The version of SQL Server you are running determines the range of scores available:

- SQL Server Standard: The Score ranges from 30 (lowest acceptable similarity score) to 50 (exact match).
- SQL Server Enterprise: The Score ranges from 55 (lowest acceptable similarity score) to 100 (exact match).
To process fuzzy matches:

1. Open the One Analytics eStart Matching utility.

2. From the **Match Status** drop-down, select **Fuzzy Matches** to display all fuzzy matched records in the eStart Member Record table.

 NOTE: Records are displayed in the order that they were processed by the ETL job. Use the **Sort by Score** drop-down to display the results by the similarity score.

3. In the **Member ID** column, click the + icon to display the One person records that are potential matches for the eStart record. The similarity score is displayed in the **Score** column.

 NOTE: The score and the methodology used to calculate it depend on the edition of SQL Server you are running. See the section introduction for more information.

4. To display the carer information held in the One person record by clicking the chevron in the **Person ID** column.

5. Process the match depending on whether the records both belong to the same person or not:
 - If the records both belong to the same person, click the green **Accept** button to complete the match. If multiple matches exist for a person, when a record is accepted, all others are discarded and the person is classed as matched.

 ![Accept Button]

 - If the records do not belong to the same person and you want to discard the match, click the red **Discard** button to remove the match from the list. It is then added to a table of discarded matches so future eStart Matching ETL jobs do not attempt to rematch it.

 ![Discard Button]
If the records do not belong to the same person and you want to manually search for the correct One record:

i. Click the blue **Search** button to display the **One Person Search** screen.

A search is automatically performed using the forename and surname of the person as they exist in the eStart member record. It is recommended that you check that the name is correct. In the following example screenshot, 'Jo' has been entered into the eStart member record as 'Joe', which has caused the disparity with the One person record.
ii. Update the fields in the **One Person Search** panel as required and click the **Search** button to display the results in the **One Person Records** table. In the following example screenshot, the spelling of the name has been corrected to ‘Jo’ in the **Forename** field and the search rerun.

![Screenshot of One Person Search and Records](image)

iii. Select the **Accept** radio button for the appropriate record. If multiple matches exist for a person, when one record is accepted, all other matches are discarded and the person is classed as matched.

iv. Click the **Match** button to create the match and return to the **Manage Conflicts** screen.

Bulk Processing Fuzzy Matches

Fuzzy matches are scored on the likelihood of both records belonging to the same person. You can use the bulk match function to accept all fuzzy matches equal to or above a certain score. This performs the same process as manually accepting a match, but on a bulk automated scale.

IMPORTANT NOTE: Care should be taken when bulk processing matches. The lower the score you choose, the greater the risk of false positives. If you are running SQL Server Enterprise edition, you should take additional care when bulk processing matches. Because of the way Enterprise evaluates matches, the highest scoring match is not necessarily the correct one.

To bulk process fuzzy matches:

1. Open the One Analytics eStart Matching utility.
2. From the **Match Status** drop-down, select **Fuzzy Matches** to display all fuzzy matched records in the **eStart Member Record** table.
3. Scroll to the bottom of the screen to the **Bulk match records with a match score >=** panel.
4. Enter the required match score and click the **Match** button to display a confirmation dialog.

![Bulk Match dialog](image)

5. Click the **Yes** button to perform the bulk match and return to the **Manage Conflicts** screen.

Processing Unmatched Records

If the system is unable to identify Capita One records that match an eStart record based on the similarity criteria, the record is classed as unmatched, and can be manually processed if required.

To process unmatched records:

1. Open the One Analytics eStart Matching utility.
2. In the **Match Status** drop-down, select **Unmatch** to display all unmatched eStart member records in the **eStart Member Record** table. Records are displayed in the order that they were processed by the ETL job.
3. Locate the required record and click the magnifying glass button to display the **One Person Search** screen.
4. Update the fields in the **One Person Search** panel as required and click the **Search** button to display the results in the **One Person Records** table.

![One Person Search and Records](image)

5. Select the **Accept** radio button for the appropriate record.
6. Click the **Match** button to create the match and return to the **Manage Conflicts** screen.
Reprocessing Incorrectly Matched Records

If at any point an eStart record has been incorrectly matched, it is possible to break the match and submit it for reprocessing the next time the ETL job is run:

- If the records were matched by the ETL routine because they met the ID or exact match criteria, you must change one of the records in eStart or One v4 to prevent them from being matched again during the next eStart Matching ETL job.
- If the eStart record was matched incorrectly by a user during conflict processing, you can attempt to manually match it to the correct record again after the eStart matching ETL job has next run (unless a match is found for it by the job).

To submit a record for reprocessing:

1. Open the One Analytics eStart Matching utility.
2. In the Home header bar, click the eStart Matching menu button to display an options drop-down.

3. Select Matched Records to display the Matched Records screen. Records are displayed in order of the Member ID.

NOTE: The Matched Records screen displays information as it currently exists within the Capita One and eStart client records. It is not a snapshot of the details at the point of matching. Any changes made to either of the records are displayed in this screen, even if they are made after matching.
4. Locate the required record:

- To search for a certain record, enter the student name in the search field and click the search button. The results table is automatically updated.

- To filter by match type, select the required type from the **Match Action** drop-down.

5. Click the **Reprocess** button to resubmit the match for processing.
Reporting on Vulnerable Groups

You can use One Analytics to report on risks that have been recorded against students in One v4. This enables you to identify vulnerable groups and highlight people at risk, according to the risk categories that have been imported into One Analytics (see Vulnerable Risk Groups on page 131).

Use the Risk Assessment lookup table in One v4 (Tools | Administration | Lookups) to create and manage risk codes in order to identify young people that are members of vulnerable groups.

Where a risk category is assigned to a person and has been imported into One Analytics, it can be used for analysis.

Risk categories imported from One v4 populate the following dimensions:

Student - Detail:
- Assessment Date
- Risk End Date

Student - Codes:
- Risk Category Code
- Risk Category Code Description

Each risk category imported also creates two flags:
- [Risk Category Code] Now
- [Risk Category Code] Ever

These flags are listed in the Dimensions pane below the folders, and have values of True, False and Null. If required, you can add the flags to a specific folder and create aliases for the
values. You can add the flags to visualisations to indicate whether students currently belong or have ever belonged to a vulnerable group.

\[
\begin{array}{cccccc}
\text{Student Id (Student)} & DD Ever & DD Now & DP Ever & DP Now & ESS2 Ever \\
1 & False & False & False & False & True \\
2 & False & False & False & False & True \\
\end{array}
\]

MORE INFORMATION:

[Creating Aliases](#) on page 19.
Customising Colour Schemes in One Analytics Desktop

Introduction

One Analytics contains several predesigned colour palettes for use within the visualisations. A set of Capita-branded colour palettes has been created that One Analytics Desktop users should install on to their own machine. It is also possible to create your own colour schemes.

Capita Colour Palettes

The Capita-branded colour code set is provided in Appendix C: Capita-Branded Colour Codes on page 134. To install the Capita colour scheme, you must complete the following instructions on each machine running the One Analytics Desktop.

To add the Capita colour palettes:

1. Locate the Preferences.tps file in the My Tableau Repository directory.
2. Open the file in a text editor, e.g. Microsoft® Notepad.
3. Copy and paste the code from Appendix C: Capita-Branded Colour Codes (page 134) in between the <workbook> </workbook> tags.
4. Save and close the file. The colour schemes are available the next time you open One Analytics Desktop.

NOTE: If One Analytics Desktop is currently running, you must close and reopen it for the changes to take effect.
Adding Additional Colour Palettes

Introduction

To create additional colour palettes, edit the following templates as required and insert them into the Preferences file between the `<preferences> </preferences>` tags as outlined in the previous section. Colour codes can be entered as hexadecimal values or in RGB format.

MORE INFORMATION:

Categorical Colour Palettes

Categorical palettes are used for discrete dimensions, for example:

```
<color-palette name="Categorical Palette" type="regular">
  <color>#ff0000</color>
  <color>#00ff00</color>
  <color>#0000ff</color>
  <color>#ffff00</color>
</color-palette>
```
Sequential Colour Palettes
Sequential palettes are used for continuous fields, generally for measures. These often use a single colour, and the strength of the colour indicates the quantity or level of a value. You must define each colour variant in the sequential colour palette, for example:

```xml
<color-palette name="Sequential Palette" type="ordered-sequential">
  <color>#e5e5ff</color>
  <color>#ccccff</color>
  <color>#b2b2ff</color>
  <color>#9999ff</color>
  <color>#7f7fff</color>
  <color>#6666ff</color>
  <color>#4c4cff</color>
  <color>#1919ff</color>
  <color>#0000ff</color>
</color-palette>
```

Diverging Colour Palettes
Diverging palettes are used to show two ranges of values, such as negative and positive numbers. The colour indicates the range and the colour intensity or purity (depending whether the colours merge or are separated by a white middle) indicates the magnitude. These palettes can be continuous, where one colour blends into the other, or separated by a different coloured middle, for example:

```xml
<color-palette name="Diverging Palette" type="ordered-diverging">
  <color>#ff0000</color>
  <color>#0000ff</color>
</color-palette>

<color-palette name="Diverging Palette White Middle" type="ordered-diverging">
  <color>#ff0000</color>
  <color>#ffffff</color>
  <color>#0000ff</color>
</color-palette>
```
The following table provides the names and context of the UDF dimensions, along with their links and an indication of whether or not they can be used in the current One Analytics release:

<table>
<thead>
<tr>
<th>UDF Context</th>
<th>UDF Dimension Name</th>
<th>Links</th>
<th>Can be used?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bases - Base Area detail</td>
<td>UDF_BASEAREA_DEFINITION</td>
<td>Base.Base_id = UDF_BASEDEFINITITION.ENTITY_ID</td>
<td>Yes</td>
</tr>
<tr>
<td>Bases - Base classification</td>
<td>UDF_BASECLASSIFICATION</td>
<td>Base.Base_id = UDF_BASEDEFINITITION.ENTITY_ID</td>
<td>Yes</td>
</tr>
<tr>
<td>Bases - Base detail</td>
<td>UDF_BASEDEFINITITION</td>
<td>Base.Base_id = UDF_BASEDEFINITITION.ENTITY_ID</td>
<td>Yes</td>
</tr>
<tr>
<td>Bases - Base Ofsted detail</td>
<td>UDF_BASEOFSTEDDETAILS</td>
<td>Base.Base_id = UDF_BASEDEFINITITION.ENTITY_ID</td>
<td>Yes</td>
</tr>
<tr>
<td>CE – Employment detail</td>
<td>UDF_BASICEMPLOYMENTDETAILS</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>CIE – Entertainment detail</td>
<td>UDF_BASICENTERTAINMENTDETAILS</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>CIE – Chaperon detail</td>
<td>UDF_CHAPERONEAPPLICATIONDETAILS</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>G&B – Claim detail</td>
<td>UDF_CLAIMDETAILS</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>TM – Course detail</td>
<td>UDF_COURSEADDITIONALDETAILS</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>TM – Course Template detail</td>
<td>UDF_COURSETEMPLATEADDITIONALDETAILS</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>CSS – Court order detail</td>
<td>UDF_COURTORDERDEFINITION</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>TM-Application detail</td>
<td>UDF_CREATEAPPLICATION</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>Case management</td>
<td>UDF_CSS_SEN</td>
<td>CssSenInvolvement.Involvement_Id = UDF_CSS_SEN.ENTITY_ID And CssSenInvolvement.Involvement_Fo rm_Id = UDF_CSS_SEN.ENTITYSub_Type_ID</td>
<td>Yes</td>
</tr>
<tr>
<td>UDF Context</td>
<td>UDF Dimension Name</td>
<td>Links</td>
<td>Can be used?</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------------------</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>CSS – Prosecution disposal detail</td>
<td>UDF_DISPOSALDETAILS</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>EY – Provider detail</td>
<td>UDF_EARLYYEARS.BASICPROVIDERDEFINITION</td>
<td>Provider.Provider_Id = UDF_EARLYYEARS.BASICPROVIDERDEFINITION.ENTITY_ID</td>
<td>Yes</td>
</tr>
<tr>
<td>EY – Provider capacity & times</td>
<td>UDF_EARLYYEARS.CAPACITYANDTIMES</td>
<td>la_service_provider_Detail.la_service_provider_Detail_Id = UDF_EARLYYEARS.CAPACITYANDTIMES.ENTITY_ID</td>
<td>Yes</td>
</tr>
<tr>
<td>EY – Complaint detail</td>
<td>UDF_EARLYYEARS.COMPLAINTSSUMMARY</td>
<td>la_service_provider_complaints.record_id = UDF_EARLYYEARS.COMPLAINTSSUMMARY.ENTITY_ID</td>
<td>No</td>
</tr>
<tr>
<td>EY – Staff detail</td>
<td>UDF_EARLYYEARS.EARLYYEARSEARFF</td>
<td>people.person_Id = UDF_EARLYYEARS.EARLYYEARSEARFF.ENTITY_ID</td>
<td>No</td>
</tr>
<tr>
<td>EY – Monitoring detail</td>
<td>UDF_EARLYYEARS.MONITORINGRECORDDETAILS</td>
<td>LA_Serv_Prov_Monitoring.La_Serv_Prov_Monitoring_Id = UDF_EARLYYEARS.MONITORINGRECORDDETAILS.ENTITY_ID</td>
<td>No</td>
</tr>
<tr>
<td>EY – Service number detail</td>
<td>UDF_EARLYYEARS.SERVICENUMBERSDETAILS</td>
<td>LA_SERVICE_PROVIDER.la_service_provider_id = UDF_EARLYYEARS.SERVICENUMBERSDETAILS.ENTITY_ID</td>
<td>No</td>
</tr>
<tr>
<td>EY – Service detail</td>
<td>UDF_EARLYYEARS.SERVICEPROVISIONDEFINITION</td>
<td>la_service_provider_Detail.la_service_provider_Detail_Id = UDF_EARLYYEARS.SERVICEPROVISIONDEFINITION.ENTITY_ID</td>
<td>Yes</td>
</tr>
<tr>
<td>CE – Employer detail</td>
<td>UDF_EMPLOYERDETAILS</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>CIE – Entertainment employer visit detail</td>
<td>UDF_ENTERTAINMENTEMPLOYEERVISITEDDETAILS</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>CSS - Equipment detail</td>
<td>UDF_EQUIPEMENTDETAILS</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>CSS - Equipment Loan detail</td>
<td>UDF_EQUIPEMENTLOANDETAILS</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>Exclusion detail</td>
<td>UDF_EXCLUSIONDETAIL</td>
<td>ExclusionDetail.Exclusion_Id = UDF_EXCLUSIONDETAIL.ENTITY_ID</td>
<td>Yes</td>
</tr>
<tr>
<td>Early Years Enquiries</td>
<td>UDF_EYE.ENQUIRYDEFINITION</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>UDF Context</td>
<td>UDF Dimension Name</td>
<td>Links</td>
<td>Can be used?</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Governing Body</td>
<td>UDF_GOVERNORS.GOVERNINGBODYCOMPOSITION</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>Composition detail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Governing Body</td>
<td>UDF_GOVERNORS.GOVERNINGBODYDEFINITION</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>Detail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Governor clearance</td>
<td>UDF_GOVERNORS.GOVERNORCLCLEARANCECHECK</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>check</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSS - Hearing</td>
<td>UDF_HEARINGIMPAIRMENTDETAILS</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>Impairment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE - Employment</td>
<td>UDF_INSPECTIONDETAILS</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>employer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>visit details</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIEE Performance</td>
<td>UDF_PERFORMANCEDETAILS</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>Detail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Person Detail</td>
<td>UDF_PERSONDEFINITION</td>
<td>Person.Person_Id = UDF_PERSONDEFINITION.ENTITY_ID</td>
<td>Yes</td>
</tr>
<tr>
<td>SEND \ EHCP -</td>
<td>UDF_PROVISIONALALLOCATIONDETAILS</td>
<td>Provision.Provision_Id=UDF_PROVISIONALALLOCATIONDETAILS.ENTITY_ID</td>
<td>Yes</td>
</tr>
<tr>
<td>Provision</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A&T Appeal</td>
<td>UDF_RIAANT.ANTAPPEALSDETAILS</td>
<td>Application.Appeal_Id = UDF_RIAANT.ANTAPPEALSDETAILS.ENTITY_ID</td>
<td>Yes</td>
</tr>
<tr>
<td>Detail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A&T Application</td>
<td>UDF_RIAANT.ANTRIAAPPLICATION</td>
<td>Application.Application_Id = UDF_RIAANT.ANTRIAAPPLICATION.ENTITY_ID</td>
<td>Yes</td>
</tr>
<tr>
<td>Detail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A&T Application</td>
<td>UDF_RIAANT.ANTRIAAPPLICATIONPREference</td>
<td>Application.Preference_Id = UDF_RIAANT.ANTRIAAPPLICATIONPREference.ENTITY_ID</td>
<td>Yes</td>
</tr>
<tr>
<td>Preference Details</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>School History</td>
<td>UDF_SCHOOLHISTORY</td>
<td>BaseStudent.Base_Student_Id = UDF_SCHOOLHISTORY.ENTITY_ID</td>
<td>Yes</td>
</tr>
<tr>
<td>Site Detail</td>
<td>UDF_SITEDEFINITION</td>
<td>Site.Site_Id = UDF_SITEDEFINITION.ENTITY_ID</td>
<td>Yes</td>
</tr>
<tr>
<td>Staff Detail</td>
<td>UDF_STAFFDEFINITION</td>
<td>Person.Person_Id = UDF_STAFFDEFINITION.ENTITY_ID</td>
<td>Yes</td>
</tr>
<tr>
<td>Student Detail</td>
<td>UDF_STUDENT</td>
<td>Student.Student_Id = UDF_STUDENT.ENTITY_ID</td>
<td>Yes</td>
</tr>
<tr>
<td>Carer Detail</td>
<td>UDF_STUDENTCARERLINKDEFINITION</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>UDF Context</td>
<td>UDF Dimension Name</td>
<td>Links</td>
<td>Can be used?</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------------------</td>
<td>-------</td>
<td>--------------</td>
</tr>
<tr>
<td>Visual Impairment</td>
<td>UDF_VISUALIMPAIRMENTDETAILS</td>
<td>N/A</td>
<td>No</td>
</tr>
</tbody>
</table>
Appendix B: ETL Parameters

Introduction

Due to the nature of One and the different ways of using and configuring data, some data cannot be consistently transformed for all LAs in the same way. To compensate for this, certain parameters must be set locally before the ETL process can be executed.

Most parameters will be configured during the initial installation of the One Analytics data warehouse, however if new parameters are released, or if you need to update existing parameters, you can configure them in SQL Server.

The values entered into these parameters during installation should have been recorded in the One Analytics Technical Services document that was completed prior to installation of the One Analytics system. This document should be kept up to date and available for reference in the event of these parameters being changed.

WARNING: If you change an ETL parameter, with the exception of PermittedRiskCategories, you will need to rebuild the data warehouse for it to take effect. If a rebuild is not performed, data loaded before the parameter is changed and not altered afterwards will remain as per the original parameter. Any new or altered data will be based on the new parameter. This will result in data inconsistencies.

You should consult with Capita One prior to rebuilding your data warehouse to ensure it is done in the most appropriate way.

All data will be updated to reflect the new parameter values when a rebuild takes place following a parameter change.

Changes to the PermittedRiskCategories parameter impact all records the next time the ETL process is run. This does not require a rebuild.

The parameters are contained in the following tables (SQL Server | Databases | OneAnalyticsDWStaging | Tables):

- config.Parameters
- config.LAServices

Parameters - config.Parameters Table

Young Carer

There are two ways of identifying students who are young carers. The Young Carer parameters determine which one is used for the ETL process. After configuration, these parameters populate the Is Young Carer and Was Young Carer fields for students within the data sources.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>IsYoungCarerFlag</td>
<td>Set to either ‘Student Record’ or ‘Young Carer History’. If ‘Student Record’ is set, the ‘Carer’ flag is used on the student record. If ‘Young Carer History’ is set, then either the YoungCarerInvolvementForm or YoungCarerService parameters must be set. Default value is ‘Student Record’</td>
</tr>
</tbody>
</table>
Appendix B: ETL Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>YoungCarerInvolvementForm</td>
<td>If the IsYoungCarerFlag parameter is set to ‘Young Carer History’, either this parameter or the YoungCarerService parameter must be populated. This parameter indicates the ID of the involvement form that is valid for young carers. Default value is null.</td>
</tr>
<tr>
<td>YoungCarerService</td>
<td>If the IsYoungCarerFlag parameter is set to ‘Young Carer History’, either this parameter or the YoungCarerInvolvementForm parameter must be populated. This parameter indicates the ID of the service that supports young carers. Default value is null.</td>
</tr>
</tbody>
</table>

Student History Null Registration Type

To deal with issues created by student history records with no registration type (REGTYPE) values, this parameter enables you to decide whether to ignore such records, import them with a null registration type value or to replace the null with a default value in the data warehouse.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>NullRegTypeBehaviour</td>
<td>To select a new default value, set this parameter to the required code from the lookups table for lookups 0722. You should interrogate the database using SQL to view the contents of this table. To ignore records with null REGTYPE values, enter the value ‘IGN’. To import records in spite of a null REGTYPE value, leave this field blank. Default value is ‘OTH’ (other).</td>
</tr>
</tbody>
</table>

Null Inactive Reason Code

When student records are flagged as inactive but no reason code is provided to explain why, this parameter enables you to decide whether to permit such records as they are, or to replace the null with a default value.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>NullInactiveReasonCode</td>
<td>To select a new default value, set this parameter to the required code from the lookups table for lookups 0048. To permit null values in the reason code fields, set this parameter to ‘LEV’. Default value is ‘DEC’ (deceased).</td>
</tr>
</tbody>
</table>

Minimum and Maximum School Age

To identify if students should be attending compulsory education, and to populate the Missing Education field, define the age range for your LA using these two parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>MinimumSchoolAge</td>
<td>Minimum statutory age at which children are required to be in education. Default value is ‘5’. NOTE: Default value is based on legislation for England.</td>
</tr>
</tbody>
</table>

One Analytics System Administration Handbook
Appendix B: ETL Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaximumSchoolAge</td>
<td>Age at which children are no longer required to be in education.</td>
</tr>
<tr>
<td></td>
<td>Default value is ‘18’.</td>
</tr>
<tr>
<td></td>
<td>NOTE: Default value is based on legislation for England.</td>
</tr>
</tbody>
</table>

Early Years Provider Type

Current descriptions for Early Years provider types are provided by the default values for the following parameters. You can change the description for the provider types by updating these parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>EarlyYearsProviderTypeB</td>
<td>Provider Type: B</td>
</tr>
<tr>
<td></td>
<td>Default value is ‘School’.</td>
</tr>
<tr>
<td>EarlyYearsProviderTypeD</td>
<td>Provider Type: D</td>
</tr>
<tr>
<td></td>
<td>Default value is ‘Child Minder’.</td>
</tr>
<tr>
<td>EarlyYearsProviderTypeO</td>
<td>Provider Type: O</td>
</tr>
<tr>
<td></td>
<td>Default value is ‘Independent’.</td>
</tr>
<tr>
<td>EarlyYearsProviderTypeNull</td>
<td>Provider Type: Null</td>
</tr>
<tr>
<td></td>
<td>Default value is ‘Not Provider’.</td>
</tr>
</tbody>
</table>

eStart

If you do not use the default setting (where the eStart member ID is matched to the One person ID) to populate the EMS_Id field in the member table, you must configure one of the two parameters. The value entered must match the original name exactly, otherwise a null value will be returned. If a null value is returned for both parameters, the default setting is assumed, and the native EMS_Id column value is used.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>eStartEMSMemberCustomLabel</td>
<td>If you use a custom label field to populate the EMS_Id field in the member table, the name must be entered into this parameter. It must match the original name exactly.</td>
</tr>
<tr>
<td>eStartEMSEnternalSystemIdCompany</td>
<td>If you use an external system identifier field to populate the EMS_Id field in the member table, the name must be entered into this parameter. It must match the original name exactly.</td>
</tr>
</tbody>
</table>
Appendix B: ETL Parameters

Vulnerable Risk Groups
This parameter displays the risk category codes that are available to be tracked within One analytics.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>PermittedRiskCategories</td>
<td>To select risk categories to be tracked, enter the required risk category codes from lookups table 0520. Separate codes with a comma, e.g. DD, DC, PP. Where a risk category code is not stated, the associated risk category is not displayed against students in One Analytics.</td>
</tr>
</tbody>
</table>

Parameters - config.LAservices Table

Services Involved With
Student-service relationships (defined as activities, involvements or provisions related to the indicated service) can be checked by logic implemented into the ETL. To enable this, the services must be entered into the [OneAnalyticsDWStaging].[config].[LAservices] table. The following information is needed:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service_Id</td>
<td>The ID of the service you want to include from the SSS_Services table. This can be any relevant value from Select Service_ID from SSS_Services.</td>
</tr>
<tr>
<td>One_Service_Name</td>
<td>The name of the service as known within the One system. Select the description from SSS_Services, e.g. ‘Childcare’, ‘Young Children’s Services’.</td>
</tr>
<tr>
<td>DW_Service_Column_Name</td>
<td>The name to be used to create a column for the service within the data warehouse. The new column uses a tri-state (true/false/null) field to indicate whether a person currently has (true), has had in the past (false), or has never had (null) a relationship with this service. The names must follow column naming conventions, e.g. ‘Young_Career_Service’.</td>
</tr>
</tbody>
</table>

Configuring the Parameters in SQL Server
To view and edit the current settings:
1. Sign in to Microsoft SQL Server Management Studio as an administrator.
2. In the Object Explorer panel, locate the config.Parameters table (SQL Server | Databases | OneAnalyticsDWStaging | Tables).

3. Right-click the table name and select Edit Top 200 Rows to display the ONE-TABLEAU.OneAnalyticsDWStaging - config.Parameters table.

4. As required, update the Value cells for the required parameters.

5. Click the x icon to close the table.

Configuring Services in SQL Server

To view and edit the current settings:

1. Sign in to Microsoft SQL Server Management Studio as an administrator.

2. In the Object Explorer panel, locate the config.LAServices table (SQL Server | Databases | OneAnalyticsDWStaging | Tables).

3. Right-click the table name and select Edit Top 200 Rows to display the ONE-TABLEAU.OneAnalyticsDWStaging - config.LAServices table.
4. As required, enter the **Service_Id**, **One_Service_Name** and **DW_Service_Column_Name** as explained in the following table:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service_Id</td>
<td>The ID of the service you want to include from the SSS_Services table. This can be any relevant value from Select Service_ID from SSS_Services.</td>
</tr>
<tr>
<td>One_Service_Name</td>
<td>The name of the service as known within the One system. Select the description from SSS_Services, e.g. ‘Childcare’, ‘Young Children’s Services’.</td>
</tr>
<tr>
<td>DW_Service_Column_Name</td>
<td>The name to be used to create a column for the service within the data warehouse. The new column uses a tri-state (true/false/null) field to indicate whether a person currently has (true), has had in the past (false), or has never had (null) a relationship with this service. The names must follow column naming conventions, e.g. ‘Young_Career_Service’.</td>
</tr>
</tbody>
</table>

5. Click the x icon to close the table.
Appendix C: Capita-Branded Colour Codes

Introduction

The XML code containing the Capita colour scheme palettes is in the following section. This can be copied and pasted in between the `<workbook> </workbook>` tags in the Preferences file. The colour schemes are included for reference in the Colour Schemes: Discrete and Colour Schemes: Ordered sections on page 136.

Colour Code

```xml
<preferences>
    <color-palette name="Capita Colours" type="regular">
        <color>#005B82</color>
        <color>#00A1C1</color>
        <color>#505253</color>
        <color>#FF5800</color>
        <color>#CA005D</color>
        <color>#9CA299</color>
        <color>#F0AB00</color>
        <color>#91004B</color>
        <color>#008566</color>
        <color>#A1C6CF</color>
        <color>#4F2683</color>
        <color>#C9B280</color>
        <color>#6773B6</color>
        <color>#7AB800</color>
        <color>#6773B6</color>
    </color-palette>

    <color-palette name="Capita Blue (Gradient)" type="ordered-sequential">
        <color>#005B82</color>
        <color>#11668A</color>
        <color>#237293</color>
        <color>#357E9B</color>
        <color>#478AA4</color>
        <color>#5996AC</color>
        <color>#6BA2B5</color>
        <color>#7DAEED</color>
        <color>#8FBAC6</color>
        <color>#A1C6CF</color>
    </color-palette>
</preferences>
```
Appendix C: Capita-Branded Colour Codes

</color-palette>
<color-palette name="Capita Temperature (Gradient)" type="ordered-sequential">
 <color>#91004B</color>
 <color>#8F0015</color>
 <color>#8E1E00</color>
 <color>#8D5100</color>
 <color>#8B8300</color>
 <color>#5F8A00</color>
 <color>#2C8900</color>
 <color>#008705</color>
 <color>#008636</color>
 <color>#008566</color>
</color-palette>

<color-palette name="Capita Gray-White-Orange (Diverging)" type="ordered-sequential">
 <color>#505253</color>
 <color>#FFFFFF</color>
 <color>#FF5800</color>
</color-palette>

<color-palette name="Capita Gray-White-Purple (Diverging)" type="ordered-sequential">
 <color>#505253</color>
 <color>#FFFFFF</color>
 <color>#CA005D</color>
</color-palette>

<color-palette name="Capita Blue-Orange (Diverging)" type="ordered-sequential">
 <color>#005B82</color>
 <color>#FF5800</color>
</color-palette>

<color-palette name="Capita Blue-White-Orange (Diverging)" type="ordered-sequential">
 <color>#005B82</color>
 <color>#FFFFFF</color>
 <color>#FF5800</color>
</color-palette>
</preferences>
Appendix C: Capita-Branded Colour Codes

Colour Schemes: Discrete

Capita Colours

Colour Schemes: Ordered

<table>
<thead>
<tr>
<th>Colour Palette Name</th>
<th>Colour Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capita Blue (Gradient)</td>
<td></td>
</tr>
<tr>
<td>Capita Temperature (Gradient)</td>
<td></td>
</tr>
<tr>
<td>Capita Grey-White-Orange (Diverging)</td>
<td></td>
</tr>
<tr>
<td>Capita Grey-White-Purple (Diverging)</td>
<td></td>
</tr>
<tr>
<td>Capita Blue-Orange (Diverging)</td>
<td></td>
</tr>
<tr>
<td>Capita Blue-White-Orange (Diverging)</td>
<td></td>
</tr>
</tbody>
</table>
Index

Aliases .. 19
Blending ... 69, 86
Calculated Fields .. 9, 10
Colour ... 121
Colour Palettes
 Categorical .. 122
 Diverging.. 123
 Sequential .. 123
Data Item Types
 Converting ... 18
Data Sources ... 4
 Downloading... 8
 Editing.. 7, 9
 Embedding passwords in 21
 Filtering .. 23
 New releases .. 22
 Publishing .. 20
 Replacing ... 23
Data Warehouse .. 34
Datasets
 Importing .. 60
 Diagnostic Tool .. 34
 Dimensions .. 5
eStart Matching .. 37, 105
ETL Parameters
 Configuring .. 128
 ETLs ... 34
 Diagnosing Errors ... 34
Folders
 Creating new .. 12
 Full Tableau Licence .. 36
 Geographic Roles .. 94
 Post Codes and ... 95
GIS Datasets .. 64
 Importing .. 68
 Preparing for Import .. 64
Import Tool
 GIS... 64
 Removing Datasets ... 69
 Joins ... 14
Maps... 65, 81
 Plotting counties on .. 99
 Plotting polygons on 82
 Point Maps ... 90
Measures ... 5
One Analytics Import Tool, The 60
One Analytics Report Viewer, The 103
One Analytics Server
 Granting access to the 37
 Owned Content .. 41
 Parameters .. 6
 Aspect ... 78
 Control Card ... 6
Passwords
 Resetting.. 38, 39
 Permissions .. 26, 41

Content .. 47
Recommended .. 58
Site Roles ... 42
Workbooks ... 54
Projects ... 32
 Adding permissions to 47
 Deleting users from ... 52
 Locking workbooks to 53
 Publishing data sources to 21
Report Catalogue
 Using the ... 71
 Site Roles ... 41
SSRS Reports .. 103
Statistical Neighbours 60
UDFs (User-Defined Fields) 12
Grouping .. 17
User Groups ... 43
Users
 Adding to groups ... 45
 Importing .. 37
 Importing from One .. 37
 Removing .. 38
Vulnerable Groups .. 119
Configuring the parameter for 131
Workbooks ... 31
 Removing users from .. 58